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Abstract. Electron imaging in space and time is achieved in microscopy with
timed (near relativistic) electron packets of picometer wavelength coincident
with light pulses of femtosecond duration. The photons (with an energy of
a few electronvolts) are used to impulsively heat or excite the specimen
so that the evolution of structures from their nonequilibrium state can be
followed in real time. As such, and at relatively low fluences, there is no
interaction between the electrons and the photons; certainly that is the case in
vacuum because energy–momentum conservation is not possible. In the presence
of nanostructures and at higher fluences, energy–momentum conservation is
possible and the electron packet can either gain or lose light quanta. Recently,
it was reported that, when only electrons with gained energy are filtered, near-
field imaging enables the visualization of nanoscale particles and interfaces with
enhanced contrast (Barwick et al 2009 Nature 462 902). To explore a variety
of applications, it is important to express, through analytical formulation, the
key parameters involved in this photon-induced near-field electron microscopy
(PINEM) and to predict the associated phenomena of, e.g., forty-photon
absorption by the electron packet. In this paper, we give an account of the
theoretical and experimental results of PINEM. In particular, the time-dependent
quantum solution for ultrafast electron packets in the nanostructure scattered
electromagnetic (near) field is solved in the high kinetic energy limit to obtain
the evolution of the incident electron packet into a superposition of discrete
momentum wavelets. The characteristic length and time scales of the halo of
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electron–photon coupling are discussed in the framework of Rayleigh and Mie
scatterings, providing the dependence of the PINEM effect on size, polarization,
material and spatiotemporal localization. We also provide a simple classical
description that is based on features of plasmonics. A major part of this paper
is devoted to the comparisons between the theoretical results and the recently
obtained experimental findings about the imaging of materials and biological
systems.
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1. Introduction

The recent development of photon-induced near-field electron microscopy (PINEM) [1, 2]
has opened up new vistas for imaging with electrons. In the presence of matter, the unique
interaction between electrons and photons results in the unraveling of the nanostructures
involved. From the total population of transmitted electrons, PINEM can select for those
electrons that have absorbed/emitted light quanta from nanoscale electromagnetic fields,
allowing for the illumination of particles and boundaries between distinct media. Consequently,
the spatial resolution of once-dark structural features can be imaged (‘lighted up’) on the
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nanoscale and potentially reaching the atomic scale of electron microscopy [3]. Moreover,
by capturing the evanescent field on its intrinsic time scale (femtoseconds), PINEM provides
imaging in both space and time, and with orders of magnitude signal enhancement [4]–[6].

Apart from the promise of PINEM as a technique, the elucidation of the remarkable
effect whereby tens of photons are absorbed/emitted and imaged by electrons is a significant
objective in and of itself. We shall use PINEM interchangeably to mean the effect with ‘M’
being ‘microscopic’ and as the technique with ‘M’ being ‘microscopy’. The PINEM effect
can be understood by answering two distinct but related questions. Firstly, how can the
electron absorb/emit any photons at all? Secondly, how can tens of photons be allowed? The
diffraction of an electron beam by a standing electromagnetic wave was foreseen in 1933 by
Kapitza and Dirac (the Kapitza–Dirac (KD) effect) [7], who showed that counter-propagating
electromagnetic waves (a standing wave) can act as an effective diffraction grating. Depending
on the focusing of the light beams, i.e. the angular uncertainty that gives rise to uncertainty in the
spatial frequency or wave vector (Ek) [8, 9], there result absorption and stimulated emission that
give rise to diffraction restricted to net even quanta of momentum change. Direct experimental
manifestations of the KD effect were reported by resolving the minute angles of reflection and
related features [10]–[12].

However, without such a configuration, the net absorption/emission of photons by electrons
in free space is forbidden due to energy–momentum conservation, as discussed below.
Nevertheless, this energy–momentum mismatch can be eliminated by altering the dispersion
relation of photons using matter [13, 14]. The phase velocity of light, which is the ratio of
the angular frequency (ω) to the spatial frequency (k), can be slowed in a dielectric material,
allowing for matching through k (see below). One example for changing the phase velocity is to
propagate light in a dielectric gas, as in the known inverse Cerenkov effect [15]. Similarly,
in the inverse Smith–Purcell effect [16], the amplitude/phase modulation of near-field light
scattered from a grating can induce momentum shifts and lead to absorption/emission of photons
by electrons. In the case of PINEM, the nanomaterial to be imaged plays the critical role of
energy–momentum matching, with energy exchange in tens of electronvolts, which can easily
be resolved in the energy spectra. The spatial confinement gives rise to momentum spread [17]
and hence the matching. The temporal resolution enables the maximum field to be captured and
utilized in imaging.

Figure 1 (top) illustrates the energy–momentum matching condition by means of energy
or momentum spread. The green line represents the dispersion relation for a free photon in
vacuum, whereas the blue dotted line represents the momentum change needed for a 200 keV
electron to match the photon at the energies indicated. In free space, as marked, the two lines
do not overlap and hence the interaction is not allowed. However, a significant energy spread
due to temporal confinement (vertical ellipse) or momentum spread due to spatial confinement
(horizontal ellipses) can allow for such interaction. For PINEM, at a given photon energy,
the longitudinal momentum must spread by a large amount in order to allow for net photon
absorption/emission (inelastic process) with acceleration and deceleration. On the other hand,
in the KD effect, the net energy change (absorption/stimulated emission) is zero, resulting in
an elastic process that leads to a minute angle change; the change in longitudinal momentum
is small (see blue/red vectors in figure 1 (top) inset) and easily matched by laser-focusing
confinement. We note that ultrafast PINEM leads to energy uncertainty that is relatively small,
as indicated by the width of the ‘pancake,’ but it is possible on the attosecond scale to utilize the
1t1ω uncertainty for matching, as discussed later.
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Figure 1. Energy–momentum conservation and the uncertainty in time and
space. (Top) energy–momentum conservation of free electron and free photon
via momentum broadening (horizontal ellipses) due to spatial confinement and
energy broadening (vertical ellipse) due to temporal confinement. The solid
green line represents the dispersion relation of a free photon, and the dotted
blue line represents the momentum change of a free electron at the given energy
change. For PINEM, the electron changes its energy by a single-photon quantum
and its momentum by a value larger than that of a free photon of the same energy.
For the KD effect, the electron energy is unchanged, whereas the transverse
momentum is changed by two quanta of photon momentum, and the longitudinal
momentum is virtually unchanged (see the inset). (Bottom) The relativistic
dispersion relation of an electron (solid blue line), a free photon (solid green line)
and a retarded photon (solid red line). (Bottom inset) Changes of momentum and
energy of an electron and a photon. The energy change of 2.4 eV (black vertical
arrow) of the retarded photon (red arrow) and corresponding momentum change
(black horizontal arrow) must overlap with those of the electron (blue).

The energy–momentum conservation is necessary but not sufficient for coupling. This is
because the component of the electric field in the direction of electron propagation (longitudinal
direction) must be nonzero to accelerate or decelerate the electrons. The degree of photon
absorption/emission in PINEM must therefore depend on the strength of the coupling and
the orientation between the photon electric field and electron propagation. However, one has
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to ask the question raised earlier: How can the electron absorb/emit so many photons, up to
eight [1] or many tens for silver nanowire, as discussed below? And what is the nature of the
process, coherent or incoherent? The interaction of thermally excited phonons with electrons
has been reported by Boersch et al [18]; the energy loss/gain is meV for phonons and their
resolution in the energy spectra is limited because of the near-eV spectral broadening. The
potential of photon interaction to widen the energy spectra has been explored by Howie [19]
in relation to STEM and other detections. In their theoretical treatment of the interaction of
electrons with evanescent fields, García de Abajo and co-workers derived the probabilities
of single [20] and multiple [21] absorption/emission. For the case of multiple events, they
considered the solution to the Lippman–Schwinger equation in powers of interaction and
propagation, with the corresponding coefficients in the expansion recursively and numerically
obtained.

In this paper, armed with scattering theory, we show how the scattering approach provides
an intuitive picture that is predictive of the key parameters involved in PINEM imaging of
different finite-sized objects. We first consider the solution of the scattered partial waves in
the Rayleigh and Mie regimes and then allow the field to interact with incident electrons at
different impact parameters. Instead of using the perturbative expansion method, we solve the
time-dependent Schrödinger equation analytically, in the PINEM regime, providing directly
the relevant PINEM field, which satisfies energy–momentum conservation when coupled to the
electron, and its dependence on spatial, energy, polarization and temporal characteristics. We
shall compare the results obtained with those of multiple photon absorption/emission kinetics
and time-integrated transition probabilities [22]. A major part of this paper is devoted to the
comparisons of the theoretical results with the experimental findings obtained using PINEM
imaging of nanomaterials and biological systems.

Before presenting these theoretical and experimental results, we discuss in what follows
considerations of energy–momentum conservation and the evanescent fields of plasmonics,
which are characteristic of metals and metal-like materials. The scattering theory approach is
not limited to metals and here we apply it to both metallic and dielectric structures.

2. Energy–momentum conservation

Consider the interaction of an electron and a photon that are propagating with an angle2 relative
to each other. The relativistic electron energy is given by

Ee =

√
c2 p2

e + m2
ec4, (1)

where me, pe and Ee are the electron mass, momentum and energy, respectively. The photon
momentum in the direction of the electron is p// = h̄kp cos2 and the one perpendicular to it
is p⊥ = h̄kp sin2, where kp is the photon spatial frequency (wave vector). Because the total

energy is
√

c2(p2
// + p2

⊥
)+ m2

ec4, in order to absorb the photon, the electron must gain energy

and momentum compatible with its relativistic dispersion relation,

Ee + h̄ωp =

√
c2(pe + h̄kp cos2c)2 + c2(h̄kp sin2c)2 + m2

ec4, (2)
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where the photon angular frequency is given by ωp. The critical angle 2c is defined such that
equation (2) can be satisfied. Solving equation (2) for the critical angle,

cos2c =
2h̄ωp Ee + (h̄ωp)

2
− (h̄kpc)2

2h̄kpc2 pe
≈
ωp Ee

kpc2 pe
. (3)

In the approximate limit described in equation (3), we take advantage of the fact that the
electron energy is five orders of magnitude greater than the photon energy (Ee � h̄ωp ≈ h̄kpc),
which is the case in PINEM experiments. Noting that the group velocity of the electron
is ve = (∂Ee/∂pe)= (c2 pe/Ee) and that the phase velocity of the photon is v̄p = (ωp/kp),
equation (3) becomes

v̄p

ve
= cos2c 6 1. (4)

In equation (4), conservation of energy and momentum has been reduced (in the high
electron energy limit) to the matching of the photon phase velocity and the electron group
velocity. It follows that in vacuum, when ωp/kp = c, photon absorption/emission by an electron
is not possible because ve cannot equal or exceed c. For coupling to occur, the phase velocity
of the photon must be lowered from c to at most the velocity of the electron, and this is
accomplished through the variation of kp via the material (e.g. in the inverse Cerenkov effect).
This is graphically illustrated in figure 1 (bottom), in which the phase velocity of light must
be decreased to match the slope (group velocity) of the electron dispersion curve. Another
important consequence of equation (4) is that the equality is descriptive of the 2 dependence
and thus the velocity matching can be reached by having an appropriate angle as well as a
dielectric structure to decrease the phase velocity of light. It is to be noted that the condition in
equation (4) is necessary but not sufficient for effective electron–photon coupling; the strength
of the interaction depends on the magnitude of the electric field in the direction of electron
propagation, as mentioned above and discussed below.

To investigate the mechanism by which the photon phase velocity is slowed by a metal
plasmon, we will consider the dielectric function, which is necessary for the calculation of the
dispersion relation. The relationship between resonant absorption and the refractive index of a
material is well known, especially for a simple model of an atom with a single electron bound by
a harmonic potential and acted upon by the external electric field (see for example [23]–[25]).
Here, we only highlight the basic features that will be used later to compare with the results
of scattering theory. In this picture, the equation of motion for the electron corresponds to that
of a forced, damped harmonic oscillator, me z̈ + meγ ż + meω

2
0z = −eE , where z is the charge

displacement distance, me and −e are the electron mass and charge, ω0 is the frequency of
the harmonic potential, γ is a phenomenological damping (friction) coefficient, and E is the
electric field. If the electric field varies sinusoidally in time as E0e−iωt , then the solution reduces
to z = eE(meω

2 + imeγω− meω
2
0)

−1.
The electric displacement D = ε0 E + P is due to both the external field E and the induced

polarization, P = −Nez, in the material, where ε0 is the permittivity of free space and N is the
number density. Combining these relations, one obtains

D ≡ ε0ε(ω)E = ε0

(
1 −

Ne2/meε0

ω2 −ω2
0 + iγω

)
E,
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where ε(ω) is the frequency-dependent dielectric function. For the case of a metal, the electron is
assumed to be free, and in this case the restoring force vanishes (ω0 = 0), yielding the following
dielectric function,

ε(ω)= 1 −
ω2

bp

ω2 + iγω
, (5)

where ωbp = (Ne2/meε0) is the bulk plasma frequency. Equation (5) gives the dielectric function
of an ideal conductor as a function of the external field frequency, which is known as the
classic Drude model solution [25]. For noble metals, electrons outside of the conduction band
also contribute to the dielectric function, yielding the empirically corrected dielectric function,
ε(ω)= ε∞ − (ω2

bp/ω
2 + iγω), where ε∞ = 1 for an ideal conductor in which no electrons are

bound [26]. The dielectric function is important in determining the properties of evanescent
plasmon waves, and below we consider its relevance to electron imaging.

3. Photon-induced near-field electron microscopy (PINEM) and evanescent plasmonics:
the simple, particle picture

Here, before discussing the PINEM results using the quantum formalism and scattering theory,
it is useful to consider the simple (classical) approach of plasmonics for which evanescent
wave modes at the interface ‘inherit’ the refractive index of the material and hence the velocity
matching needed for the coupling. For this reason, in this section we shall deal with two different
cases: the case of a planar material with one characteristic mode and the case of a cylinder
for which many modes exit; for the latter case, the existence of many modes and the surface
curvature allow for the matching condition to be satisfied, unlike the planar case. The process
is assumed to be a collision between an electron and a photon at a single point in space. The
particle picture is therefore limited and does not provide the quantitative result of the scattering
theory–time-dependent Schrödinger equation approach presented in section 4.

3.1. Planar material

From the above, it is clear that electrons can only absorb/emit photons with phase velocity below
c. On a planar surface such electromagnetic waves can indeed propagate at the interface between
a metal and a dielectric. In figure 2 (top inset), this boundary is taken to be perpendicular to ẑ,
the propagation direction, and we shall call the x < 0 and x > 0 regions material 1 (metal) and
material 2 (dielectric), respectively. Considering a metal surface mode in the infinite planar
geometry, the transverse-magnetic (TM) mode solution of Maxwell’s equations above (x > 0)
and below (x < 0) the boundary is the only nonzero solution for this geometry [25]. The
magnetic field points in the ŷ-direction transverse to the direction of propagation (ẑ), but the
electric field has both a transverse (x̂) and a longitudinal (ẑ) component, namely

Hy = −Ae±kmx xeikz z, (6a)

Ex = −
Akz

ωε0εm
e±kmx xeikz z, (6b)

Ez = ∓
iAkmx

ωε0εm
e±kmx xeikz z, (6c)
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Figure 2. Dispersion relations of flat-surface plasmons. (Top inset) Schematic
diagram of the boundary between dielectric (region 2) and metal (region 1). (Top)
The dispersion curve based on the empirically corrected Drude model neglecting
the friction is plotted for silver (red), along with the free photon (green). The bulk
(ωbp) and surface (ωsp) plasmon frequencies are shown as dotted lines. (Bottom)
The phase velocity as a function of the surface plasmon frequency. The group
velocity of 200 keV electrons is shown as a straight line, with the intersection
being the critical plasmon frequency at which absorption of the surface plasmon
is permitted.

where the top sign refers to the region m = 1 (x < 0), the bottom sign refers to the region m = 2
(x > 0), and A is an amplitude coefficient. The TM wave equation is expressed as

∂2 Hy

∂z2
+

((ω
c

)2
ε− k2

z

)
Hy = 0. (7)

Continuity of the electric field at the boundary implies that equation (6c) is the same
for m = 1 and m = 2 at the boundary x = 0, thereby obtaining (k1x/ε1)+ (k2x/ε2)= 0.
Similarly, by plugging equation (6a) into the wave equation, equation (7), one obtains
the additional relations k2

mx + (ω/c)2εm − k2
z = 0. Finally, combining these relationships, one

obtains expressions for the different components of the spatial frequency,

kz =
ω

c

√
ε1ε2

ε1 + ε2
, kmx =

ω

c

√
−ε2

m

ε1 + ε2
. (8)
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Since regions 2 and 1 are dielectric and metal, respectively, ε2 = 1 (for vacuum) and ε1 is the
metallic dielectric function (see the Drude model in the previous section); recall that ε1 � 0 for
metals. Finally, using equation (8), the phase velocity of this electromagnetic wave along the
interface can be expressed as

v̄p =
ω

Re[kz]
≈ c

√
ω2

bp − (ε∞ + 1)ω2

ω2
bp − ε∞ω2

. (9)

To see whether this phase velocity can be significantly lower than c, the rhs of equation (9)
has been simplified in the negligible friction limit (i.e. γ � ω), which holds for metals [25].
As ω→ ωbp/

√
ε∞ + 1 ≡ ωsp, the phase velocity v̄p → 0, where ωsp is the surface plasmon

frequency (see figure 2 (top)). Therefore, only for a limited range of frequencies (from 3.9 eV to
4.3 eV) the phase velocity of the surface wave can be reduced to match any velocity the electron
may have. If kz were purely real, then from equation (6) there would be undamped propagation
in the z-direction. However, as can be seen from equation (5), the presence of a nonzero
friction coefficient γ introduces an imaginary component, kz = Re[kz] + i Im[kz]. Therefore,
the propagation factor in the z-direction becomes exp(i kzz)= exp(i Re[kz]z) exp(−Im[kz]z),
which means that there exists a well-defined attenuation length, L z. Likewise, in the transverse
(x)-direction, the propagation of the wave in the dielectric (region 2) is exp(−k2x x)=

exp(−Re[k2x ]x) exp(−i Im[k2x ]x), and the attenuation length in the x-direction is L2x . These
lengths are given by

L z = {Im[kz]}
−1, L2x = {Re[k2x ]}−1. (10)

By substituting the spatial frequencies (equation (8)) into equation (10), the attenuation lengths
can be found as a function of ω for a metal with a given ωbp, ε∞ and γ . For example, using those
parameters for silver, at h̄ωp = 2.4 eV excitation (off-resonant to the ∼4 eV surface plasmon
resonance), we find that L2x = 260 nm and L z = 8µm. Thus, the wave extends along the surface
and decays into the dielectric (and also into the metal).

In figure 2 (bottom), the phase velocity of the TM mode (equation (9)) is plotted as a
function of incident photon frequency for TM evanescent waves on a planar silver surface,
with the dielectric function obtained via fitting [26] of the Drude model to the experimental
data [27]. The group velocity of our 200 keV electron is shown as a straight line. If the electron
co-propagates with the photon, 2c = 0, and from equation (4) the photon phase velocity must
match the electron velocity. Velocity matching occurs at 3.8 eV photon energy. Thus, based
on conservation of energy and momentum, 2.4 eV photons cannot be absorbed or emitted by
200 keV electrons at an infinite planar surface, which exhibits the single mode of equation (6).
Moreover, for photon energies greater than 3.8 eV, absorption by the electron would only be
possible by fine-tuning the electron–photon angle 2 (corresponding to an electron incident
angle of π/2 −2 relative to the flat metal surface), in which the required fine-tuning precision
depends on the momentum spread of the evanescent photon.

Within the plasmonics treatment, these limitations can be overcome when a structure with
nanoscale dimension(s) (e.g. a cylinder) is employed such that there are multiple modes with
radius-dependent dispersion that allow for such matching.

3.2. Cylindrical material

Consider a cylinder of radius a, with r and y corresponding to the radial and axial directions
(see figure 3 (top)). A surface wave can travel angularly (along θ ) as well as axially
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Figure 3. Electron–plasmon interaction. (Top) Schematic geometry of
cylindrical surface plasmon and free electron. The halo of evanescent modes
is drawn for visualization purposes, assuming that cylindrical modes start from
θ = π , where the incident wave hits first, and propagate in both directions. For
200 keV electrons and 2.4 eV photons, the tangential phase velocities and critical
angles at the cylinder surface (right) for the first three modes are shown for silver
nanowires of (middle) 50 nm and (bottom) 200 nm radii. The left panels show the
‘interaction cross sections’ (see text) of electron–photon coupling.
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(along y), resulting in helical propagation along the cylinder. Solving Maxwell’s equations in
this geometry for purely angular motion (no axial propagation), the electric field components of
the pure angular mode propagating in vacuum outside the cylinder are [28]

Er = Zr(r) exp[i(βθ −ωt)]; Eθ = Zθ(r) exp[i(βθ −ωt)]. (11)

In equation (11), Zr(r)= −Aββ(kpr)−1 Hβ(kpr) and Zθ(r)= iAβH ′

β(kpr), where kp ≡ ω/c,
Hβ(x) is the Hankel function of the first kind of order β [29, 30]; Aβ are amplitude coefficients,
and differentiation is taken with respect to the argument.

As can be seen from equation (11), the wave solution travels tangentially with spatial
frequency β/r . By applying the boundary conditions that the tangential components of the
electric field and the magnetic field must be continuous at the surface, the following condition
is obtained [31],

ε1 =
J ′

β(
√
ε1kpa)Hβ(kpa)

Jβ(
√
ε1kpa)H ′

β(kpa)
.

For a given ω = kpc, there are an infinite number of complex tangential angular frequencies β
that satisfy this equation and can be numerically solved. Each solution corresponds to a different
mode with tangential phase velocity in the angular direction, v̄p = ω {Re[β/r ]}−1. Therefore, the
energy–momentum matching condition (equation (4)) is expressed as

cos[2c(r)] =
ω

ve Re[β/r ]
=

( r

a

)
cos[2c(a)], (12)

where 2c(r) is the critical angle as a function of the distance, r , from the center of the cylinder
and 2c(a) is the critical angle at the surface of the cylinder. Since the electron and the angular
modes propagate in ẑ and θ̂ , respectively, the angle between the two is2= θ −π/2 (see figure 3
(top)).

For each mode, equation (12) defines an ‘interaction cross section’, given by the polar
coordinates (r, 2c(r)) for all y along the cylinder axis, which traces a curved plane in space;
each point on that plane is a position at which the electron can absorb/emit the photon while
conserving energy and momentum. An electron with group velocity ve can couple to the mode
as it passes through this plane. This velocity matching procedure is akin to the inverse Cerenkov
effect [15], except that velocity matching for the cylindrical mode is satisfied at an ‘interaction
point’ using the instantaneous phase velocity, rather than along the entire electron trajectory
using a uniform phase velocity. Note that the dispersion relation is altered inside the dielectric
medium for the inverse Cerenkov effect, while the dielectric function of the metal cylinder
alters the near-field dispersion in vacuum outside the cylinder; in this respect, the plasmonic
picture is similar to the inverse Smith–Purcell effect [16] whereby the grating induces near-field
amplitude/phase modulation, leading to discrete shifts of the photon momentum in vacuum and
hence coupling.

For the β of each mode, the tangential spatial frequency β/r decreases away from the
cylinder center. Thus, as can be seen in equation (12), the critical angle also decreases with
increasing r . There is a maximum radius rMAX, such that 2c(rMAX)= 0, and electron–photon
coupling cannot occur for r > rMAX. From equation (12) we obtain rMAX = (a/cos[2c(a)]).
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Therefore, there is a well-defined cut-off length Lβ (from the surface) within which
electron–photon coupling can occur. This length is given by

Lβ = rMAX − a =

(
1

cos [2c(a)]
− 1

)
a. (13)

Higher-order modes have larger tangential spatial frequencies and therefore longer cut-off
distances.

Consider the interaction of an electron with the tangential modes of a cylinder discussed
above. For the first three modes, the middle and bottom panels of figure 3 show the critical
angles for which the phase velocity matches the electron velocity for 200 keV electrons and
2.4 eV photons incident on silver nanowires with two different wire radii. The higher-order
modes have increasing values of Im[β], which correspond to faster tangential decay and hence
the diminished overlap with the imaging electron. For each wire size, the right panel shows
cos[2c(a)] for each mode, whereas the left panel displays the ‘interaction cross section’ of the
modes as given by equation (12); from equation (13), the spatial extent of the cross section
outside of the cylinder is given by Lβ .

There are two important differences between the cylindrical and planar situations. Firstly,
the existence of multiple modes with decreasing tangential phase velocity allows for the
existence of mode(s) with phase velocity below the electron velocity, in contrast to the planar
case for which there exists only a single mode that may or may not have a phase velocity below
the electron velocity. Secondly, for modes with phase velocity below the electron velocity, the
curvature of the cylindrical surface means that, as the wave travels over the surface, it will pass
through the ‘interaction plane’, which satisfies equation (12), such that the electron can couple
to the mode while conserving energy and momentum.

The picture presented above for a metal plasmon gives a simple illustrative description of
the PINEM phenomenon as a classical, point interaction between electrons and photons. It is
important to note that because the scattered wave is confined (i.e. radially decaying spherical or
cylindrical wavelets), the electric field experienced by the traveling electron decomposes into
a distribution of spatial frequency components. Therefore, it is necessary to calculate the full
pattern of the scattered fields and employ the quantum mechanical formalism, which considers
electron–photon coupling as a wave evolution, in order to ascertain all of the components of the
scattered light that can couple with the electron; this is the focus in what follows.

4. PINEM: theoretical

In this section, we consider the formal mathematical solution of the PINEM effect: first
the scattering of light from a nanostructure in the Mie and Rayleigh regimes and then the
influence of this scattered light on imaging with electrons by solving the time-dependent
Schrödinger equation. Throughout the paper, we shall designate this approach as the scattering-
of-photon/time-dependent Schrödinger equation (STS). The results are compared with the
experimental findings. In appendices A and B, we shall give the details of the mathematical
solutions.

As shown in appendix B, the solution for scattering from an object of comparable size
to λ are complicated because they involve an infinite summation of spherical (e.g. particle) or
cylindrical (e.g. nanowire) wavelets. In order to elucidate the physics of the scattering process,
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we will discuss first the Rayleigh (dipole) limit for spheres, which is valid for nanoparticles
whose dimensions are significantly smaller than the wavelength of incident light. This allows
us to develop features of scattering for the small radius limit, which would be obscured by the
mathematical machinery of the general (Mie) solution.

The electric field of the incident light acting on a particle creates a temporally oscillating
polarization, which in turn radiates electromagnetic waves [23]. In the small-particle limit, the
polarization of the particle can be thought of as a single oscillating dipole moment; classically,
the charges are separated within the radiation cycle because of the relatively small dimensions
of the object [32]. For light with angular frequency ω, the induced dipole moment, Eµ, is

Eµ= 4πε0χsa
3 EE0 exp[−iωt], (14)

where ñ is the (complex) refractive index of the material, a the radius of the particle and ε0 the
vacuum permittivity; χs, the spherical susceptibility, is given by χs = (ñ2

− 1)(ñ2 + 2)−1. The
oscillating dipole moment, Eµ, generates an outwardly radiating electromagnetic field,

Ẽ(Er , t)=
1

4πε0r 3
(k2r 2r̂ × Eµ× r̂ + (1 − ikr) (3r̂(r̂ · Eµ)− Eµ)) eikr , (15)

where k is the spatial frequency, r is the distance from the center of the particle and r̂ is its unit
vector. In the vicinity of the particle (r ≈ a), the near-field limit, the kr term can be ignored
in equation (15) because r ≈ a � k−1 in the (Rayleigh) dipole approximation. Expressing
equation (15) in Cartesian coordinates yields the near-field dipole limit,

Ex(Er , t)≈ E0χs
a3

r 5
(2x2

− y2
− z2)e−iωt ,

Ey(Er , t)≈ E0χs
a3

r 5
(3xy)e−iωt , (16)

Ez(Er , t)≈ E0χs
a3

r 5
(3zx)e−iωt .

In equation (16), we have chosen the incident electric field to be polarized in the x̂-direction,
such that EE0 = E0 x̂ .

For a near-field point (see figure 4), which we shall invoke for the interaction with electrons,
x = b cosφ, where φ is the azimuth angle with respect to the light polarization and b is the
impact parameter. From the x-dependence of equation (16), we see that Ez ∝ cosφ, as is the case
for the (Mie) exact solution shown in appendix B. It is to be noted that the near-field components
are fast-decaying (evanescent) with r−3 dependence. Close inspection of equation (16) reveals
that the transverse field, Ex , has 1/e depth of ∼ a/3 along the x-direction and Gaussian σ -width
of ∼ a/

√
6 along the z-direction. The longitudinal field component, Ez, has 1/e depth of ∼ a/3

along the x-direction.
A similar result holds for an infinite cylinder of small radius by taking the first-order term

(thin wire approximation) of the general cylindrical solution (equation (B.2)). The resulting
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Figure 4. Schematic diagram of three-body interactions of PINEM. The electron,
incident light and nanoparticle in spherical and cylindrical geometries are shown.
a and b denote the radius of the particle and the impact parameter of the electron
trajectory relative to the center of the particle, respectively. The electron and
incident light both propagate in the ẑ-direction, and the polarization of the
incident electric field is in the x̂-direction. The symmetry axis in the cylindrical
geometry is in the ŷ-direction. Note that for the incident electric field E0, both
possibilities for its direction are perpendicular to the shown electron propagation
(no coupling), whereas the scattered field can couple.

electric fields in Cartesian coordinates are

Ez(Er , t)≈ E0χc
a2

r 4
(2xz)e−iωt

Ex(Er , t)≈ E0χc
a2

r 4
(x2

− z2)e−iωt (17)

Ey(Er , t)= 0,

where χc = (ñ2
− 1)(ñ2 + 1)−1 is the cylindrical susceptibility. As in the spherical case, EE0 =

E0 x̂ , and the symmetry axis is along the y-direction. From equation (17), it follows that the
transverse field, Ex , has 1/e depth of ∼ a/2 along the x-direction and Gaussian σ -width of
∼ a/

√
2 along the z-direction, whereas the longitudinal component, Ez, has 1/e depth also of

∼ a/2 along the z-direction. For both spherical and cylindrical geometries in the small-particle
scattering limit, we can understand the polarization dependence and characteristic skin depth
of the scattered light, which are also descriptive of the exact scattering solutions [33] (see
equations (B.1) and (B.2)) computed in this paper.

Knowing the electromagnetic field distribution adjacent to nanoparticles, we can now solve
for the effect of this field on ultrafast electrons. The electron ‘sees’ evanescent photons in
the near-field range. Figure 4 illustrates the geometry and in it we define the key parameters
involved. We note that the incident photon in this case propagates with its electric field
perpendicular to the electron trajectory (which in principle leads to no coupling, as discussed in
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section 2), but the scattered spherical wave has a field component that allows for such coupling;
if the incident electric field is perpendicular to the plane, the scattered wave will not allow for
such a coupling; thus even for a spherical wave there is a polarization anisotropy.

The time evolution of the wavefunction of an electron traveling through the scattered
electromagnetic wave can now be expressed in the PINEM regime where the electron kinetic
energy is much larger than the interaction energy with the photon. A detailed derivation
of the solution is given in appendix A. This type of quantum treatment of electron–photon
interactions has been invoked in other studies of, e.g., high harmonics (i.e. interaction of ‘bound’
electron and free photon) [34]–[37], and includes the equivalent classical action (local phase)
approach [36]. The wavefunction of the electron is defined in terms of the moving envelope
function g(z′, t ′) and the carrier wave,

9(z, t)= g(z − vet, t) exp[i(kez −ωet)]. (18)

The moving frame, z′
= z − vet , is chosen to be at the group velocity, ve, of the electron packet,

such that z′ is the relative position from the center of the packet. The envelope function in the
moving frame coordinate carries the initial wave packet profile and the final phase change due
to the interaction with the scattered wave.

For an electron in the presence of the electromagnetic field, the Hamiltonian, using the
Coulomb gauge, can be written as

H =
p̂2

e

2me
+

(
e

me

)
⇀

A · p̂e +
e2 A2

2me
≈ −

h̄2
∇

2

2me
− i

eh̄

me

1

2

(
Ẽ

+iωp
+

Ẽ∗

−iωp

)
· E∇, (19)

where
⇀

A is the vector potential and p̂e is the momentum operator, with the second term being
linear in the field whereas the third term is quadratically dependent (ponderomotive-type effect)

(see appendix B). Because pe is very large in PINEM, the second term (
⇀

A · p̂e) is dominant.

In contrast, for the KD effect,
⇀

A · p̂e does not contribute (the A2-term is dominant) because the
transverse interaction has zero amplitude (x̂ · Ẽp = 0); the longitudinal interaction is momentum
mismatched (1kz

e � kp and kz
p ≈ 0) for an energy change of h̄ωp. In equation (19), Ẽ is the

complex electric field; electrons can interact with the field of the scattered light, and either
absorb (via the Ẽ term) or emit (via the Ẽ∗ term) photon energy from (to) the field.

To consider pulsed radiation (with σp) and electron packets (with σe) of PINEM, we
approximate the temporal intensity of the slowly varying (σp � a/c) near-field scattered wave
as a Gaussian function, and solve the time-dependent Schrödinger equation for the evolution of
the wavefunction; for continuous-wave (CW) radiation, σp → ∞. The final envelope function
of the propagating electron (equation (18)) becomes (see appendix A for details)

g(z′,+∞)= g(z′,−∞) exp

[
−i

e

h̄ωp

{
exp

[
−
(z′ + veτ)

2

4v2
eσ

2
p

]}{
Im

(
exp

[
i
ωp

ve
z′

]
F̃ z

(
ωp

ve

))}]
.

(20)

In equation (20), the component(s) of the electric field that couples to the electron, hereafter
referred to as the ‘PINEM field’, is defined as

Fz

(
ωp

ve

)
≡

∫ +∞

−∞

dz′′Ez(z
′′, 0) exp

[
−i

(
ωp

ve

)
z′′

]
,
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which is the (unnormalized) Fourier transform of the z-component (direction of propagation) of
the scattered electric field at the spatial frequency 1ke = ωp/ve.

It follows that, for light with kp =1ke, v̄p = ωp/1ke = ve, which is precisely the condition
for satisfying energy/momentum conservation for coupling of electron and photon, as predicted
by equation (4). If there is no Fourier component of the electric field at this critical spatial
frequency (i.e. F̃ z(ωp/ve)= 0), then g(z′, t)= g(z′,−∞) in equation (20) and there is no
interaction, because the wavefunction does not change. Moreover, if Ez = 0, then its Fourier
transform F̃ z is also zero, and again no interaction. Accordingly, for electron–photon coupling
to occur, there must be a component of the electromagnetic wave with the appropriate phase
velocity, and the component of the electric field that points in the direction of electron
propagation must be nonzero, as was the case for the inverse Cerenkov effect discussed above.

A more transparent view of equation (20) can be obtained by the use of Taylor expansion
and re-arrangement of the summation (the Jacobi–Anger relation [30]). Substituting the
envelope function into the expression for the wavefunction (equation (18)), we obtain the final
electron wavefunction,

9(z, t → +∞)= g(z − vet,−∞)

∞∑
n=−∞

ξn(z − vet) exp

[
i

(
ke + n

ωp

ve

)
z − i(ωe + nωp)t

]
, (21)

which displays both the spatial and the temporal features, with the coefficients defined by

ξn(z
′)≡

(
F̃ z

|F̃ z|

)n

Jn

(
−

e

h̄ωp
|F̃ z| exp

[
−
(z′ + veτ)

2

4v2
eσ

2
p

])
,

where Jn is the Bessel function of the first kind of order n. In equation (21), the wavefunction
decomposes into a sum of electron wavelets with discretely varying (evenly spaced) momenta
with their envelope simply given by g(z − vet,−∞)ξn(z − vet).

4.1. Pulsed versus continuous-wave (CW) mode

For CW light and a continuous beam of electrons (σp → ∞, σe → ∞), the amplitudes of the
momentum eigenstates in equation (21) become constants. In such a case, the wavefunction
becomes a superposition of discrete spatial frequency components given by

exp

{
i

(
ke +

nωp

ve

)
z − i(ωe + nωp)t

}
,

with coefficients of (F̃ z/|F̃ z|)
n Jn(−(e/h̄ωp)|F̃ z|); the populations are therefore{

Jn

(
−

e

h̄ωp
|F̃ z|

)}2

.

If the electron is pulsed (σe <∞), the population becomes that of the nth state wave packet,

g (z − vet,−∞) exp

{
i

(
ke +

nωp

ve

)
z − i(ωe + nωp)t

}
.
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On the other hand, for the PINEM experiments with pulsed light and electrons (σp < σe <

∞), the wavefunction (equation (21)) is a superposition of spatial frequency components, with
the nth distribution centered at

exp

{
i

(
ke +

nωp

ve

)
z − i(ωe + nωp)t

}
.

The spread of each distribution in momentum space, especially the zeroth-order component,
depends on the electron pulse length, the laser duration and the time delay (τ ) between the two.
The Jn term can be interpreted as a local probability density of the nth state, ϕn, as long as it is
slowly varying compared to the light spatial frequency (ωpσp � 1). It follows that the probability
of the nth state, 〈ϕn|9〉, can be obtained by integrating over the nth envelope function,

P(n)=

∫ +∞

−∞

dz′

∣∣∣∣∣g(z′,−∞)Jn

(
−

e

h̄ωp
|F̃ z| exp

[
−
(z′ + veτ)

2

4v2
eσ

2
p

])∣∣∣∣∣
2

. (22)

Because |J−n(x)|2 = |Jn(x)|2, we immediately see from equation (22) that P(−n)= P(n);
that is, the probability of net photon absorption is equal to that of net photon emission.
The appearance of the Bessel function is reflective of the multiple pathways involved in
electron–photon interactions, in this case of absorption and emission.

By inverse Fourier transformation of the final envelope function (equation (A.14)) and by
integrating the square of the amplitude of the wavefunction in momentum space, we obtain P(n)
as a double summation,

P(n)=

∞∑
j=0

∞∑
k=0

Cn
j C

n∗

k

(
1 + Snjk R2

σ

)−1/2
exp

[
−

Snjk R2
τ

2
(
1 + Snjk R2

σ

)], (23a)

Cn
j =

1

(|n| + j) ! j!

(
eF̃ z

2h̄ωp

)n+ j (
−

eF̃∗

z

2h̄ωp

) j

, (23b)

where Snjk = n + j + k, Rσ = σe/σp and Rτ = τ/σp. The importance of equation (23) is in
providing an analytical expression of the coupling coefficients in terms of the relevant
parameters; apart from some definitions, the general form is consistent with equation (10)
of [21], except that in [21] the coefficients are obtained numerically and recursively, and here we
provide the Cn

j analytically. Equation (23) elucidates the importance of polarization anisotropy
as well as the spatial and temporal localization, as discussed below.

4.2. PINEM field: analytical solution

To elucidate the physics of PINEM, we evaluate the PINEM field, F̃ z, analytically using
the longitudinal component, Ez, for spherical (equation (16)) and cylindrical (equation (17))
geometries in the dipole limit, giving

|F̃ z| = |(E0 cosφ)χs 2a31k2
e {K1(1keb)}| (sphere), (24a)

|F̃ z| = |(E0 cosφ) χc π a21ke exp[−1keb] | (cylinder), (24b)
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where the polarization dependence is expressed by the azimuth angle, φ, and the phase matching
is described by 1k2

e K1(1keb) for the sphere and by 1keexp[−1keb] for the cylinder; both are
determined by the impact parameter b and the change of electron momentum 1ke, consistent
with the conservation requirement. χs and χc are the susceptibilities defined above. For the CW
case, the population expressed in [22] (equation (68)) is consistent with the expression for F̃ z

in equation (24a). At very small b (and a as well), the PINEM field for the two geometries
simplifies to

|F̃ z| ≈

∣∣∣∣E0 cosφχs

(
a3

b

)
21ke

∣∣∣∣ (sphere), (25a)

|F̃ z| ≈

∣∣∣∣E0 cosφχc
a2

1 +1keb
π 1ke

∣∣∣∣ (cylinder), (25b)

which is proportional to a cross-sectional area a2 (the size effect), and the matching is simply
given by1ke ≡ ωp/ve (no Bessel functions!). We note that the matching criterion is now evident
from the scattering theory approach and is consistent with the classical picture given in figure 1:
1ωe/1ke = ve, 1ke = k(f)e − k(i)e , kp = ωp/v̄p and hence 1ke = nkp(v̄p/ve) for 1ωe = nωp; only
when v̄p = ve would n photon absorption and emission be conserved through 1ke.

The above treatment is for the case of a � λ. As a approaches λ, we must obtain the exact
solution for the electromagnetic fields and their interactions with the electron. For the spherical
geometry, the incident wave is decomposed into a superposition of spherical wave solutions and
matched to the internal and the scattered waves consistent with the polarization of the material.
Such a solution was obtained by Mie for a sphere of arbitrary size [38]. The (Mie) exact solution
used in our calculations of photon scattering is well described in the literature [33, 39, 40], and
for computation purposes we invoke the equations given in appendix B.

4.3. PINEM field amplitudes

It has been shown (see appendix A for details) that it is the longitudinal component of the
field (Ez) that couples with electrons and that the probability of transition depends on the
PINEM field, F̃ z(ωp/ve), which is the Fourier component of the electric field, Ez, at the spatial
frequency of 1ke = ωp/ve. Therefore, the calculation of these two quantities is at the heart of
understanding the PINEM effect. Figure 5 is a benchmark calculation for the case of particles
with size less than λ. Both the dipole limit (of the near field; see equations (16) and (17)) and the
exact solution (Mie scattering; see equations (B.1) and (B.2)) are given. When the size is much
smaller than the wavelength, as is the case for the 10 nm radius silver wire and protein vesicle
shown in figure 5 (top), the dipole limit is almost coincident with the exact (Mie) solution. For
the 50 nm radius silver wire in figure 5 (middle left), there is a small deviation between dipole
limit and exact solutions, which is particularly apparent for the transverse component (Ex ).
For the 50 nm protein vesicle in figure 5 (middle right), the fields are more confined (with r−3

dependence) than in the case of the wire, and therefore differences between the approximate
and the exact solutions are less apparent. For the 100 nm radius silver wire and protein vesicle
shown in figure 5 (bottom), the dipole limit does not reproduce the exact solutions, even for
the longitudinal component (Ez). In such cases, the use of the exact solution is desirable for
accurate computation.

It is to be noted that the longitudinal components are more confined than the transverse
components because at far distance they are mainly composed of the radial components of the
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Figure 5. Rayleigh (dipole) and Mie (exact) total scattered fields. Comparison
of the electric field components of the (Rayleigh) dipole approximation near-
field limit with the (Mie) exact solution for silver nanowires (left) and spherical
protein vesicles (right). The results were compared for radii of 10 nm (top),
50 nm (middle) and 100 nm (bottom).

scattered (spherical) wavelets, which decay faster than the angular components. The scattered
wave results from reflection and refraction off the surface. Unlike evanescent modes on flat
surfaces (metal plasmons and dielectric total internal reflection), which are confined due to
dielectric constant mismatch, the scattered waves are geometrically confined around nanoscale
materials. Consequently, the decay length of the field strength is determined only by the particle
size for small spheres and cylinders and independent of the material (see section 4).
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Figure 6. Longitudinal fields and their spatial frequency spectra. Normalized
longitudinal components of the scattered electric field (top) and the field
spectra (bottom) along the electron trajectory for (left) a 50 nm metal cylinder
(ñ = 0.05 + 3.31i) and (right) a 250 nm dielectric sphere (ñ = 1.57), at 519 nm
illumination. Dotted lines represent the amplitude of the electric field, and solid
lines represent the real and imaginary parts of the field. The positions of arrows
indicate the spatial frequency changes required for electrons with energies of
200, 120, 60 and 30 keV to absorb a photon with 519 nm wavelength.

In figure 6, the theoretical calculations are presented for two cases studied experimentally
by PINEM: the silver nanowire and the protein vesicle. The top panels show the amplitudes
as well as the real and the imaginary parts of the longitudinal component, Ez, along the
electron trajectory, at an impact parameter equal to the radius of the nanostructure. In the
case of the metallic (ñ = 0.05 + 3.31i) cylinder of 50 nm radius (left), the scattered electric
field components are quite symmetric with respect to the z-coordinate. However, in the case
of the dielectric (ñ = 1.57) sphere of 250 nm radius (right), the electric field is asymmetric with
respect to the z-coordinate due to forward scattering enhancement (toward positive z), which is
manifest in the Mie solution for particles of size comparable to or larger than the wavelength of
the light. The light scattered from both metallic and dielectric nanostructures possess near-field
components comparable in strength to that of the incident wave and extend over the length scale
of the particle.
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Since the magnitude of the PINEM field is proportional to the incident electric field,
for plotting purposes we shall use the normalized PINEM field, |F̃ z|/E0. Figure 6 (bottom)
depicts the normalized Fourier transformed spectra, |F̃ z(k)|/E0, of the scattered electric field
shown in the top panels. The spectra are broad distributions because the electric fields are
narrowly confined. This is analogous to the position-momentum uncertainty tradeoff (see
figure 1 (top)) [17]. The Ez distribution near the small cylinder resembles a Lorentzian function
such that its Fourier transform is an exponential-like function, whereas the Ez distribution near
the small sphere resembles a Gaussian such that its Fourier transform is also a Gaussian-like
function. Note that the difference in the field spectra between the 250 nm dielectric sphere and
the 50 nm metallic cylinder is due to particle size rather than material composition or shape. For
519 nm illumination, the scattered field adjacent to the 250 nm particle exhibits a few optical
cycles, whereas the field near the 50 nm particle has less than one cycle. In fact, the spectrum of
a 50 nm dielectric cylinder (not shown) is similar to that of a metallic cylinder or sphere of the
same radius.

The electric field spectrum |F̃ z(k)| for the dielectric sphere of 250 nm radius displays a
maximum around that of the free photon (k = kp) but is significantly broadened due to spatial
confinement. At the spatial frequency that can couple with a 200 keV electron (k =1ke =

1.438kp), the magnitude in the distribution is less than the maximum but is still significant. It
is this broadening that allows the momentum component required for electron–photon coupling
(see figure 1 (top)). For a slower electron (smaller ve and therefore larger 1ke = ωp/ve), the
Fourier transform component at k =1ke decreases for both spherical and cylindrical geometries
(see figure 6 (bottom)). In the case of the sphere, |F̃ z(k)| falls off quickly such that it becomes
insignificant for incident electrons below 30 keV, while |F̃ z(k)| decreases more slowly for the
cylinder, although this difference arises from the difference in sphere and cylinder radius rather
than the type of geometry. Henceforth, in order to compare with the experimental conditions,
we define Fz ≡ |F̃ z(1.438kp)|, which is the magnitude of the PINEM field that can couple with
our 200 keV electrons.

The electric field experienced by the propagating electron is due to the superposition of
many spherical wavelets scattering from the nanostructure. It is to be recalled that the phase-
matching condition is for what the electron experiences along its trajectory, not what the
scattered photon actually possesses. When the field that the electron experiences is Fourier
transformed, the amplitude of the spatial frequency component with the appropriate phase
velocity to couple with the electron may be nonzero even if there are no photons propagating
in free space with that spatial frequency. This is illustrated in figure 7. The incident wave
enters the material, inside which the wavelength is shortened to λ/ñ. The induced polarization
radiates spherical wavelets with alternating phase along θ , resulting in an angular modulation.
Since the electric field of the spherical wavelet is transverse to its propagation (r̂ ), it can
coincide with the electron propagation direction (ẑ). Therefore, the electron effectively sees
an alternating longitudinal electric field, which efficiently couples with its momentum, pz.
Note that if the particle size (dotted circle) becomes smaller than λp of the incident radiation
shown, then the field polarization is consistent with the dipole (Rayleigh) approximation
(figure 4).

In what follows, we shall investigate the behavior of Fz, the PINEM field and its spatial
and temporal profiles, so we may examine the various dimensions of PINEM experiments:
pulse duration, polarization, particle size, material and wavelength, as well as the degree of
penetration (impact parameter). Since Fz = Fz(φ = 0) cosφ, the dependence of PINEM on the
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( m)

Incident Photon  

Electric Field: Direction and Phase  

Figure 7. Field distributions and phases. Contour plot of the angular component,
Eθ , of the light scattered from a dielectric (ñ = 1.57) sphere of 500 nm radius
due to incident 519 nm radiation. The radial propagation of angularly modulated
spherical wavelets is depicted as arrowed waves. Note that, for this particle size,
there exists strong polarization within the particle.

polarization and laser fluence is apparent from theory and will be compared to experimental
findings in section 5.

4.3.1. Temporal profile: pulse duration. The temporal profile of the PINEM intensity is
expressed in equation (22) (see appendix A for details), with the duration of the pulses given
by σe and σp (in g and ξn). In order to elucidate the importance of the temporal dependence
on the order of absorption/emission by a net number of photons (n), which can be filtered in
the energy domain, we consider here the weak interaction regime (�= eF z/h̄ω� 1 where
Jn(�)≈ (1/n !)(�/2)n). For this case, it follows that

Pn(z
′)∝ I n

∝ exp

[
−

n (z′ + veτ)
2

2v2
eσ

2
p

]
. (26)

This implies that the nth-order peak will have an effective duration of σp/
√

n (assuming
that σp � σe). In the strong interaction regime (�� n2), however, Bessel functions
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become oscillatory,

Jn(�)≈

√
2

π�
cos
(
�−

nπ

2
−
π

4

)
,

and the electron population distribution is reminiscent of a ‘diffraction-type’ pattern.

4.3.2. Spatial profile: polarization and the impact parameter. As mentioned above, the
electric field of the scattered wave is proportional to cosφ (see equations (B.1) and (B.2)
for the exact solutions and equations (16) and (17) for the Rayleigh dipole near-field limit).
Consequently, the PINEM field, Fz, also becomes proportional to cosφ , resulting in cos2 φ

polarization anisotropy in PINEM imaging.
Because the amplitude of the near field decreases away from the nanoparticle (the field

decay lengths are a/3 and a/2 for small spheres and cylinders, respectively (see equations (16)
and (17)), it is expected that the PINEM field Fz also decreases. Thus, electron–photon coupling
becomes sensitive to the impact parameter of the electron trajectory, as is readily seen in the
small-particle approximation.

For a small sphere (equation (24a)), K1 is a reciprocal exponential-like function [29, 30],
whereas for a small cylinder (equation (24b)), the PINEM field decays exponentially with
increasing b. In figure 8 (top), the exact (normalized with respect to the incident wave electric
field) PINEM field, Fz/E0, is plotted as a function of the impact parameter, b, at φ = 0 for
250 nm spheres and 50 nm cylinders of dielectric (ñ = 1.57) and metallic (ñ = 0.05 + 3.31i)
composition. For the electron trajectory going through the material interior (b < a), the PINEM
field monotonically decreases as b goes to zero. When the trajectory is outside the material
(b > a), the field decreases exponentially with b; typically, 1/e decay lengths of 68 and 80 nm
for the 250 nm sphere and 50 nm cylinder, respectively, were obtained. Here, we emphasize that
the decay length (not the magnitude) of Fz is independent of the material. The exponential decay
behavior of Fz allows us to write

Fz (b, ϕ)≈ Fz (a, 0) exp

[
−

b − a

δ (a)

]
cosϕ,

where δ is the decay length of the PINEM field.
In equation (24a), for a small sphere, Fz has a decay length of a, which is

evaluated by logarithm-differentiation of equation (24a) as δ = − limb→a(∂ log Fz/∂b)−1
= a.

In equation (24b), for a small cylinder, the decay length is δ = (1/1ke)= (λp/2π)(ve/c) to
the first order (see section 4 for the validity of equation (24b)). Figure 8 (middle) depicts the
decay length of the PINEM field, δ, as a function of the particle radius, a, for the dielectric (ñ =

1.57) and metallic (ñ = 0.05 + 3.31i) sphere and cylinder. We see that δ is identical for metal
and dielectric materials, and determined only by the geometry, radius and light wavelength.
Furthermore, the decay length for cylindrical nanostructures is mostly independent of the size,
and is sensitive only to the wavelength of the incident light. In contrast, δ for spherical particles
is indeed ∼a for small a, and converges to an asymptotic value of ∼80 nm, which also coincides
with that for cylinders.

The asymptotic decay length of 80 nm is somewhat larger than the theoretical estimation
from the thin wire approximation, for which (λp/2π)(ve/c)= 58 nm. In fact, it is found
empirically that the asymptotic value is δ = (1/k)= (λp/2π) for thick cylinders; the origin
of this disparity will be investigated later. In figure 8 (bottom), the decay lengths of the PINEM
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Figure 8. PINEM field decay behavior. (Top) The normalized PINEM field
Fz/E0 as a function of impact parameter, b, due to scattering of 519 nm incident
light from 250 nm spheres (solid lines) and 50 nm cylinders (dotted lines) of
dielectric (ñ = 1.57; blue) and metallic (ñ = 0.05 + 3.31i; red) composition.
(Middle) The PINEM field decay length, δ, as a function of the particle radius,
a, for spheres and cylinders of dielectric and metallic materials. (Bottom) The
PINEM field decay length as a function of the photon energy for silver wires
of various radii. The expected plasmonic-type behavior (equation (13)) is given
for three modes L1, L2 and L3. The value for λ/2π (section 4.3.2) is shown for
comparison.
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field for silver cylinders of various thicknesses are plotted as a function of photon energy.
Also plotted is λp/2π , which coincides with δ(a). The wavelength dependence of the decay
length for silver wires clearly shows that δ = (1/k)= (λp/2π) at any size and wavelength. It is
interesting to note that for the spherical geometry, the amplitude of the scattered electric field
has a scattering depth of ∼a/3 in the small-particle limit (see equation (16)), but the PINEM
field, Fz, has a decay length of ∼a. For the cylindrical geometry, on the other hand, even though
the field strength decays over ∼a/2 for thin cylinders, Fz decays over λp/2π , independent of
the cylinder radius.

4.3.3. Size dependence. The Fz/E0 as a function of radius a, due to scattering of incident
519 nm light from spheres and cylinders of metallic (ñ = 0.05 + 3.31i) and dielectric (ñ = 1.57)
materials, at an impact parameter equal to the radius, is shown in figure 9 (top). For comparison,
the Mie exact solution and the dipole near-field limit are shown for both geometries. For spheres,
as expected, the dipole limit agrees with the exact solution for small particles, and begins to fail
when the particle radius approaches the length scale of the incident light (near 100 nm). In the
small radius regime, Fz ∝ a3/b ≈ a2, as predicted by equation (25a). Fz decays for spheres
with radii bigger than 300 nm and, as the particle size becomes larger than the wavelength, the
interferometric resonance effect [41] of different spherical modes leads to oscillatory behavior,
which is particularly apparent for the dielectric material (see figure 9 (middle)).

The asymptotic behavior of Fz may be understood as follows. As seen in figure 6, the
maximum amplitude of the scattered electric near field is always comparable to that of the
incident light, regardless of the particle size, whereas the spatial extent of the field is comparable
to the size of the particle. Although the spatial extent of the field increases as the particle
size increases, the PINEM field, Fz, does not necessarily proportionally increase because
the increased radius also affects the size of the confinement, which consequently affects the
spectrum F̃ z(k). As the particle size increases, the spatial frequency spectrum becomes narrower
around k = kp, therefore lowering the amplitude at k =1ke = 1.438kp. The oscillatory behavior
is believed to arise from the interferometric resonance [41] of different spherical modes when
the particle size becomes larger than the wavelength. Indeed, the same oscillatory feature is
observed in the plot of the scattering efficiency (not shown). Therefore, the oscillations can be
viewed as a geometric resonance of the electric field strength. For cylinders (equation (17)),
the scattered electric field decays slowly (r−2), and unlike the case for the spherical geometry,
far-field components are not negligible in the PINEM field. However, the deviation is only 50
and 5% for cylinders with radii of 100 and 10 nm, respectively. In the dipole limit, Fz ∝ a2 as
predicted by equation (25b).

Figure 9 (bottom) displays the geometry dependence of Fz as a function of the particle
size for albumin (ñ = 1.57) and silver (ñ = 0.05 + 3.31i) nanostructures. It is clear that Fz is
much more sensitive to particle size than to material or geometry. Silver shows generally higher
Fz values at any size and shape than the dielectric; this is due to the higher polarizability of
metals (see section 4.3.4). For example, χs is 0.33 and 1.34 + 0.01i for albumin and silver
spheres, respectively. For bigger nanostructures, dielectrics display more pronounced structural
resonances than metals, regardless of the shape, because light is refracted (penetrates) into the
dielectric, while large metal particles mainly reflect the incident light. It is interesting to note that
for both dielectric and metallic materials, resonance enhancement occurs at slightly different
radii for cylinders as compared to spheres (see figure 9 (bottom)).
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Figure 9. PINEM field size dependence. Log plots of Fz/E0 for (top) metallic
(ñ = 0.05 + 3.31i) and (middle) dielectric (ñ = 1.57) nanostructures as computed
from the (Mie) exact solution and the (Rayleigh) dipole, near-field limit as a
function of the radius. The solid curves are for a sphere and the dotted ones
are for a cylindrer-shaped structure; blue is for an exact solution whereas red is
for the dipole limit. (Bottom) The linear plot of the PINEM field as a function
of radius for the different materials and geometries are shown using the exact
solutions. The solid curves are for a sphere and the dotted ones are for a cylinder-
shaped structure; blue is for dielectric whereas the red is for metallic material.
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4.3.4. Dielectric versus metallic materialst. We have compared the scattering of dielectric
and metallic nanomaterials in figures 6–9 in previous subsections. Here, by ‘a dielectric’ we
mean a material that has a positive real refractive index (positive dielectric function), and
a metal as a material that has an imaginary refractive index (negative dielectric function).
Both materials produce similar responses, although the amplitude is larger for metals due to
higher polarizability. This is most easily seen in the small radius limit, where the scattered
electric field, and therefore Fz, is proportional to the polarizability α. The enhancement
of the polarizability in metals can be understood once α is expressed as a function of
ε(ω), the dielectric constant: α = 4πε0χsa3 with χs = (ε(ω)− 1)(ε(ω)+ 2)−1 for spheres, and
α = 4πε0χca2 with χc = (ε(ω)− 1)(ε(ω)+ 1)−1 for cylinders. From these expressions, we can
see that metallic materials can enhance α (and therefore Fz) due to their negative dielectric
constants; the resonant enhancement is achieved for values of the incident ω such that ε(ω)
approaches −2 in the spherical geometry (known as the Fröhlich resonance [25]) or −1
in the thin cylindrical geometry. For larger particles, the expression for polarizability is not
straightforward due to interference effects.

Figure 10 (left) shows the calculated Fz/E0 as a function of refractive index ñ =
√
ε, near

dielectric nanostructures (sphere and cylinder) of large (top) and small (bottom) sizes. For
ñ close to 1, the light scattering is proportional to ñ2

− 1, and the electron–photon coupling
vanishes at ñ = 1. For significantly larger ñ, the calculated plot of Fz/E0 shows sharp features
due to structural resonances of different spherical and cylindrical modes [41]. The position of
the resonance feature is slightly different for spheres and cylinders due to geometry-specific
resonance conditions; the same effect was observed in figure 9. Since the structural resonance
occurs in the same way as interference inside an interferometer, it is expected to depend on the
the size of the nanostructure, the refractive index and the wavelength of light.

4.3.5. Wavelength dependence. For dielectric materials that are excited off-resonance, or with
weak on-resonance absorption, ñ is weakly dependent on the incident light frequency, whereas
for metals, ñ is inversely proportional to the incident light frequency in the visible range
(ñ ∝ i/ω; see the discussion of the Drude model in section 2). Figure 10 (right) depicts the
calculated Fz/E0 as a function of photon energy, near dielectric (top) and metallic (bottom)
nanostructures of different shapes and sizes. Here, the refractive indices of the dielectric and
metallic materials were interpolated from the experimental data for bovine serum albumin [42],
graphite [43], silver and gold [27]. In figure 10 (left), Fz changes slowly and monotonically in
the region near ñ = 1.57 for dielectric spheres and cylinders. Consequently, no resonance effect
is seen for incident light frequencies corresponding to this range of ñ. On the other hand, a
sphere with a larger radius or refractive index can show strong wavelength dependence due to the
interferometric or structural resonance [41] (not shown here). However, graphite, which has a
large refractive index, 2.53 + 1.16i at 519 nm, does not show this resonance effect because of the
large imaginary part of ñ (see figure 10 (top right)). In figure 10 (bottom right), 50 nm metallic
cylinders show an enhancement at ∼3.5 eV for silver and ∼2.5 eV for gold, which corresponds
to the cylindrical resonance at ñ2

= −1 in the small cylinder limit (see equations (24b) and (17)),
whereas large cylinders do not exhibit this strong Fröhlich-type resonance.

Figure 11 depicts the calculated spectroscopic (absorption and scattering) efficiencies as
a function of incident photon energy for various sizes and geometries of albumin, graphite,
silver and gold nanostructures. It is to be noted that the scattering efficiency includes all the
contributions for outgoing wavelets, such as refraction and reflection, while the absorption
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Figure 10. Dependence of the PINEM field on the material and the photon
excitation. (Left) The normalized PINEM field Fz/E0 due to scattering of 519 nm
light from dielectric spheres (solid line) and cylinders (dotted lines) of (top)
large and (bottom) small radii, plotted as a function of refractive index. (Right)
The normalized PINEM field Fz/E0 for (top) dielectric and (bottom) metallic
spheres and cylinders of 250 and 50 nm radii, as a function of incident photon
energy. The refractive indices of bovine serum albumin, graphite, silver and gold
were interpolated from the experimental data in the literature (bovine serum
albumin [42], graphite [43], silver and gold [27]).

efficiency is determined by the interior electric field and extinction coefficient. It is readily
seen that the PINEM fields in figure 10 are directly correlated with the scattering efficiencies
shown in figure 11, which is intriguing because Fz is calculated along a path in the vicinity
of the particle, whereas the scattering efficiency is the sum of all outgoing wave contributions
averaged over the entire solid angle.

Albumin has a negligible extinction coefficient (imaginary part of refractive index), and
absorption is insignificant for incident photon energy less than 6 eV, regardless of the particle
size. Graphite shows little change in scattering and absorption in the photon energy range
plotted, because its absorption energy is much higher. On the other hand, small metallic particles
show dominant absorption, with an enhancement around the Fröhlich resonance at ∼3.5 eV for
silver and ∼2.5 eV for gold in figure 11 (right). For small metallic nanostructures, light can
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Figure 11. PINEM field versus spectroscopic efficiencies. Spectroscopic
efficiencies of scattering (blue) and absorption (red) for 50 nm cylinders (dotted
line) and 250 nm spheres (solid line) of albumin, graphite, silver and gold as a
function of the incident photon energy.

effectively excite the entire material, regardless of photon energy. The figure shows that large
metallic particles behave like a bulk metal and reflect light of frequency below that of the surface
plasmon. Above the surface plasmon frequency, the bulk metal becomes transparent and the
whole particle is excited by the incident light, resulting in scattering and absorption.

5. Comparison with experimental results

In this section, we compare the above theoretical results with the experimental findings, recently
obtained with our second generation, ultrafast electron microscope (UEM-2) [1, 2] and others
obtained by Barwick and Flannigan of this laboratory. Of special interest are the fields imaged
by energy filtering and the temporal and polarization behavior. For a single impact parameter (b)
and polarization angle (φ), equation (23) can be used to simulate the PINEM image as well as
the electron energy gain spectum (EEGS) and electron energy loss spectrum (EELS). However,
in the experiment, the EEGS/EELS is collected with all possible b and φ within the window
aperture, w, whereas the PINEM image is acquired by summing all the energy-gained electrons
at each fixed b and φ. In order to compare theory and experiment, those integrations need to be
performed.
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The PINEM image intensity summed over n is simply given by

IPINEM (b, φ)=

∞∑
n=+1

Pn (b, φ)=
1

2
{1 − P0 (b, φ)}, (27)

with Pn of equation (22) integrated over b and φ at the temporal delay, τ , giving

PEEGS(n)=
1

π
(
w2 − a2

) ∫ 2π

0
dφ
∫ w

a
db b

∫ +∞

−∞

dz′

×
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(
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|F̃ z(b, φ)| exp

[
−
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2

4v2
eσ

2
p

])∣∣∣∣∣
2

, (28)

where w is the radius of the window. Here, the electron transmission inside the material is
made negligible, which is valid for thick or dense structures, such that the integration is done
from a to w; for imaging, the transmitted fraction is explicitly considered as shown below
in sections 5.1 and 5.2. As seen in the previous section, the F̃ z term can be approximated
as F̃ z(b, φ)≈ F̃ z(a, 0) exp[−(b − a)/δ] cosφ for spheres, where δ is the 1/e decay length.
Although equation (28) needs to be numerically integrated, in equation (23), the F̃ z terms in
the summation can be analytically integrated, and the fraction can be expressed as an infinite
sum (see appendix A for details),

PEEGS(n)=

∞∑
j=0

∞∑
k=0

Dn
jkCn

j C
n∗

k (1 + Snjk R2
σ )

−1/2 exp

[
−

Snjk R2
τ

2(1 + Snjk R2
σ )

]
. (29)

5.1. Spatial dependence

One of the main features of the PINEM effect is the spatial localization of electron–photon
interactions near the nanoscale surface. Figure 12 (top) shows the PINEM image of a single
carbon nanotube (147 nm diameter) at zero time delay (τ = 0) [1]. In figure 12 (bottom), the
transverse cross-sectional profile of the PINEM image, which is averaged along the carbon
nanotube axis, is displayed. Also plotted is the calculated PINEM profile, using equation (23),
with the scattered electric field obtained using equation (B.2) for a cylinder, and summed over
the energy-gained electron populations using equation (27). The profile exponentially decays
from the sides of the wire (at ∼74 nm), as predicted by the impact parameter dependence. The
dip at the center is the combined effect of transmission of electrons and the field of PINEM. We
note here that the nanotube itself is the ‘background’ and the field is ‘lighted up’ in the image
contrast.

5.2. Polarization

Another feature of PINEM is its dependence on the polarization of the electric field of the
incident light. Figure 13 (top) shows the density plot of the PINEM image of a single protein
vesicle [2], with the electric field of the incident wave indicated by the arrow. Figure 13 (bottom)
displays the calculated PINEM image, where the population is obtained using equation (23),
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Figure 12. Experimental and theoretical PINEM spatial dependences. (Top) The
experimental PINEM image of a single carbon nanotube (147 nm diameter).
(Bottom) The experimental and theoretical transverse cross-sectional profiles of
the PINEM image. Both the PINEM intensity and the fraction of the transmitted
intensity, in this case taken to be 0.16, are shown.

with the scattered electric field, in this case, determined using equation (B.1) for a sphere and
then summed over energy-gained electron populations using equation (27). The polarization
dependence of cos2 φ is in a good agreement with the experiment. Similar polarization effects
were observed for other materials, including nanotubes and biological cells.

5.3. Energy spectrum

The energy gain/loss observed for nanostructures on the femtosecond time scale [1] can be
reproduced theoretically. Figure 14 shows the theoretical and experimental EEGS and EELS
for a single silver wire and a protein vesicle [2]. It is to be noted that figure 14 (top) is for
a single silver wire, whereas the published EEGS/EELS data are for a cluster of silver wires
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Figure 13. Experimental and theoretical PINEM polarization dependences.
Density plots of (top) the experimental PINEM image of a single protein vesicle
(∼150 nm radius) and (bottom) the theoretical PINEM image. We note that the
theoretical image shows the cos2 φ dependence and in the experimental image
such dependence must be augmented with the topology of the vesicle, which is
not exactly spherical [2].

unlike those obtained for the image [1]. The fraction of the nth order peak was calculated using
equation (29) at τ = 0, with the other parameters obtained by fitting the temporal dependence
(see section 5.4). The widths and peak separations are obtained from fitting the experimental
data with Voigt profiles. Theory and experiment show good agreement. The calculation is self-
consistent in the sense that the fluence and pulse widths were obtained from the experimental
results fitted in figure 15, and the same parameters were used to obtain the energy spectra.
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Figure 14. Experimental and theoretical EEGS/EELS spectra of PINEM. (Top)
A single silver wire and (bottom) a single protein vesicle. (See text.)

5.4. Temporal delay and pulse duration

One of the intriguing aspects of PINEM was the dependence of the nth-order energy gain
on the temporal delay [1, 2]. Equation (23) shows that, for fixed b and φ, different order
peaks are indeed dependent on temporal delay and the peak order, with the amplitude being
explicitly dependent on the parameters involved. Equation (29) shows that the total EEGS/EELS
spectrum, which is averaged over b and φ, also displays the temporal delay dependence. In
figure 15 (top), the experimental time dependence of the EEGS/EELS for a single protein
vesicle [2] is compared to the theoretical results, �= eF z/h̄ωp = 6.7, σp = 108 fs, σe = 238 fs,
and w = 347 nm; the peak power density is 4 GW cm−2 (see table 1); this fluence agrees with
the characteristics of the focused beam within a factor of two. The Gaussian widths are 288,
265, 255 and 249 fs for the first-, second-, third- and fourth-order energy-gained electron peaks,
respectively.

In figure 15 (middle), the time dependence of the EEGS of a single silver wire is compared
to the experiment, giving eF z/h̄ωp = 4.7, σp = 209 fs, σe = 267 fs and w = 399 nm; the peak
power density is 3 GW cm−2 (see table 1). The temporal widths, στ , are 407, 341, 310 and 295 fs
for the first four orders. In figure 15 (bottom), similarly, the time dependence of the EEGS of a
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Figure 15. PINEM experimental and theoretical temporal behavior: the
experimental (symbols) and theoretical (curves) fractions of electrons that absorb
n net photons for (top) a protein vesicle, (middle) a single silver wire and
(bottom) a cluster of carbon nanotubes, as a function of temporal delay, τ ,
between the electron packet and laser pulse. Note the narrowing in time as n
increases.
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Table 1. Theoretical parameters for EEGS/EELS calculations of the protein
vesicle, silver wire and carbon nanotube.

Protein vesicle Silver wire Carbon nanotube

�= eF z/h̄ωa 6.7 ± 0.6 4.7 ± 0.4 7.5 ± 1.2
σp (fs) 108 ± 4 209 ± 22 194 ± 4
σe (fs) 238 ± 4 267 ± 36 423 ± 18
w (nm) 347 ± 12 400 ± 34 165 ± 16
a (nm) 250 50 70
δ (nm) 68 80 80
F/E0 (µm) 0.13 0.089 0.098
E0 (V m−1) 1.2 × 108 1.1 × 108 1.8 × 108

U b (mJ cm−2) 1.1 1.9 4.4

a The errors reported here are two standard deviations (95% confidence level).
b U is the energy density of the pulse

carbon nanotube cluster is compared to the experiment [1], giving eF z/h̄ωp = 7.5, σp = 194 fs,
σe = 423 fs and w = 165 nm; the peak power density is 9 GW cm−2 (see table 1). The temporal
widths, στ , are 578, 495, 468 and 452 fs for the first four orders. For imaging involving multiple
tubes, the field is enhanced.

The apparent time dependence can be readily seen in equation (23). In the weak interaction
limit, the probability can be approximated as the first term ( j = 0 and k = 0) in the sum and the

temporal behavior is a Gaussian function with effective width of στ ≈

√
σ 2

e + (1/n)σ 2
p for n > 0.

For a strong interaction, the sequences in the summation (due to Cn
j and Cn

k terms) are alternately
positive and negative, and therefore the effective width is somewhat wider than predicted for the
weak interaction limit.

5.5. Fluence effect: kinetics, incoherent-coupling model

Figure 16 (top) depicts the experimental power dependence of the EEGS probabilities for a
single silver nanowire, which shows the fractions of electrons that absorb up to six net photons.
Figure 16 (middle) describes the (b-summed) theoretical fluence dependence of the EEGS
probabilities for a single silver wire at τ = 0 (1011 W cm−2 corresponds to eF z/h̄ωp ∼ 25); note
that the higher this value the larger the population in PINEM. Within the range plotted, the
(intensity) oscillation characteristic of the Bessel function dependence is washed out because of
b-summing, and the curves converge to an asymptotic value.

In equation (22), the probability of absorbing n net photons is proportional to the square
of the Bessel function, Jn. The Bessel function is cosine-like, and therefore the population
exhibits oscillatory behavior with respect to the fluence of photons. This oscillatory behavior
is suppressed when the signal is summed over impact parameters (see figure 17). Figure 18
depicts the calculated EEGS/EELS of the silver wire at three different fluences and including
b-summing. When the fluence reaches zero (figure 18 (top)), the EEGS/EELS contains only the
zero-loss peak. For medium fluences (figure 18 (middle)), electrons that absorb/emit more than
ten photons are observed. For relatively large fluences (figure 18 (bottom)), electrons with up
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Figure 16. Dependence of PINEM on fluence. The temporally averaged and
b-summed electron gain fraction at τ = 0 for silver wire is shown. (Top)
Experimental data (and in linear scale as an inset), as well as theoretical results
calculated using (middle) STS (equation (29)) and (bottom) kinetic models
(equation (C.13)). The summations of alternating sequences in equations (29)
and (C.13) are slow to converge, and in practice the numerical summation may
be unstable due to truncation errors. With 64-bit precision, which corresponds to
about 16 significant digits, populations for e |Fz|/h̄ωp ∼ 20 (5.6 × 1010 W cm−2)
can be safely evaluated, and similarly with 80-bit precision, populations for
e |Fz|/h̄ωp ∼ 25 (8.7 × 1010 W cm−2) can be evaluated. For this reason, we used
GNU bc software [53] for arbitrary precision arithmetic calculations, with
precision set to 100.
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Figure 17. Dependence of PINEM on the fluence and impact parameter.
Dependence of the EEGS/EELS spectrum on b-summing calculated for a single
silver wire (50 nm radius). (Top) Summed over the impact parameter, b, at
low (3.6 × 1010 W cm−2 peak power) and high (5.7 × 1011 W cm−2) fluences and
(bottom) for a fixed b at low (4.5 × 109 W cm−2) and high (1.5 × 1014 W cm−2)
fluences.

to 40 photons absorbed/emitted can be observed, although their amplitudes decrease, reaching
less than 1% of the zero-loss peak. The theoretical results in figure 18 satisfactorily reproduce
the experimental data presented in figure 19.

Although all of the above STS calculations dealt with coherent waves and their possible
phases and interferences, it is interesting to compare the results with those obtained from
kinetics, which describe an incoherent-coupling model solely given by the statistics of photon
absorption/emission. In this case, the photon exchange is described as random collisions
between the electron and scattered photons; the formulation of this model is given in appendix C.
The model may be justified for an electron packet with a very short coherence length (less
than the skin depth of the PINEM field (∼100 nm)) or when using an incoherent light source.
The incoherent-coupling model does not lead to the oscillatory behavior seen in the coherent-
coupling theory (STS) discussed above (see figure 16 and appendix C for details). When
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Figure 18. Theoretical dependence of PINEM on the fluence manifested in
EEGS/EELS. The spectra for a single silver wire (50 nm radius) are shown.
(Top) At zero fluence, (middle) 1.4 × 1011 W cm−2 peak power and (bottom)
5.7 × 1011 W cm−2 peak power. In the latter case, absorption/emission of up to
40 photons can be observed and is consistent with the experimental results.
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Figure 19. Experimental dependence of PINEM on the fluence manifested
in EEGS/EELS. (Top) Linear and (bottom) log plots of the experimental
EEGS/EELS spectrum of a silver wire bundle. Absorption/emission of up to 40
photons is observed. Data were obtained by Brett Barwick and David Flannigan
of this laboratory (see text).

considering the sum over the impact parameter, b, and azimuth angle, φ, the incoherent-
coupling model results in equation (C.13), which is similar to the coherent-coupling counterpart,
equation (29). For the incoherent-coupling model, figure 16 (bottom) shows the spatially
averaged electron intensity for a single silver wire at τ = 0 as a function of the peak laser
power; note that 1010 W cm−2 corresponds to eF z/h̄ωp ∼ 8.
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Figure 20. Experimental PINEM showing ‘inverted distribution’ behavior. Plot
of the experimental EEGS/EELS spectrum of a silver wire bundle with 1038
nm incident light at different delays between electron and light pulses. At zero
delay, the first-order peaks (absorption and emission of single photon) are more
populated than others, including the zero loss peak (ZLP). This unique pattern
is reproduced theoretically and is due to the fact that b-summing for a bundle
of wires exhibits more of the small b-values than b-summing for a single wire
(see text).

From the above discussion, it follows that the nature of electron–photon coupling in
PINEM, coherent versus incoherent, may be elucidated from studies of the oscillatory behavior
of the fluence dependence. However, because of summing over the impact parameter, the
dependence on fluence becomes less distinct in the range examined (figure 16). We speculate
that both the coherent and the incoherent formulations describe sequential interactions of the
electron with single photons, rather than simultaneous multiphoton exchange that gives rise to
harmonic generation; the sequential interaction also describes the inverse Cerenkov and inverse
Smith–Purcell effects. In the energy profile, at high fluence and with up to 40 net photons
absorbed/emitted, the oscillatory behavior may have some signature, as the results in figure 20
for silver nanotubes may suggest; further studies will be carried out for this regime.

6. Summary and outlook

In this contribution, we report theoretical and experimental studies of PINEM. Stimulated by
recent experimental results [1, 2] and those reported here, we address in this paper the STS
formulation that provides closed-form solution and analytical descriptions of the key parameters
involved in PINEM. Manifestations of various properties are discussed, including nanostructure
size, material, polarization, fluence and time dependence. The near field of the nanostructure,
when its size is less than or comparable to the wavelength of radiation, is obtained within the
framework of scattering theory (Rayleigh and Mie), whereas the electron interaction with this
near field is derived using the time-dependent Schrödinger equation. Comparisons with the
experimental results are made, and some of the key findings are summarized in the following
points.
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Firstly, PINEM offers several domains of study: real-space imaging, real-time dynamics
and real-time energy spectra (EELS/EEGS), as well as their dependencies on polarization,
fluence and wavelength of the incident radiation field. These characteristics are elucidated here
by considering the phase and direction of the scattered field from the nanostructure and the
solution of the time-dependent amplitudes as a result of the (quantum) interaction with pulsed
electron packets. The PINEM field, as we call it, provides a physical picture of what is expected
in experiments, and when this field is Fourier transformed, comparisons with the experimental
results are directly made in the different domains. We also discussed the two regimes of pulsed
versus CW modes of excitation.

Secondly, the striking electron absorption/emission of up to 40 photons can be understood
from consideration of the energy–momentum phase matching and the nature of the scattered
near field from the nanostructure. In PINEM, the energy exchange involves inelastic processes
and it is possible to absorb/emit (accelerate/decelerate) net single photons (n = 0, ±1, ±2,...).
In contrast, for the KD effect, the process is elastic (absorption and stimulated emission) and
transverse momentum changes give rise to a minute deflection with even quanta of momentum
exchange. These considerations of energy–momentum conservation, which have their roots in
the nature of interaction between electrons and the electromagnetic field ( EA · p̂ versus A2 terms
of the Hamiltonian; see text), can be understood within the framework of spatial and temporal
confinements as dictated by the uncertainty principle (1z ↔1pz and 1t ↔1E).

Thirdly, the multiple absorption/emission of single photons in PINEM is possible because
energy–momentum conservation is satisfied over a broad range of dispersion energy. The
momentum conservation (velocity matching) condition is virtually unchanged after absorption
of a single photon because the electron energy is five orders of magnitude larger than the
change in the electron energy (i.e. the photon energy) and therefore the electron group velocity
changes very little. This is not the case for a typical KD effect, where the momentum–energy
conservation condition is significantly different, and the momentum spread of the interaction
confinement leads to only a few photon absorption/emission events. Accordingly, the interaction
of KDE needs to be provided by a focused and intense standing wave in order to induce multiple
photon absorption/emission (diffractive regime) [8]. Here, we considered these coherent
interactions (interferences), as well as the kinetics using an incoherent collision model.

Fourthly, because the PINEM field and its associated processes decay on a femtosecond
time scale, there is a huge advantage in utilizing the pulsed mode. The orders of magnitude
enhancement achieved in UEM may be appreciated when comparing with the time-averaged,
CW mode of excitation. For a tightly focused CW laser (106 W cm−2), the number of excitations
on the time scale of the field is nearly four to five orders of magnitude less than that achieved in
UEM using 10–100 GW cm−2 irradiance. Furthermore, for CW powers of about 10 W, it would
be necessary for the nanostructures to dissipate the energy without significant structural damage.
In UEM, typically the average power is of the order of 100 mW. Perhaps most importantly, the
precise overlap of pulses in UEM allows for signal acquisition times of only a few seconds, as
every electron contributes to the gain/loss signal on the time scale of the field’s existence. In
contrast, for CW electron spectroscopy, the signal will be overwhelmed by a background whose
magnitude is conditioned by the repetition rate and other factors. Lastly, we note that the process
of ±nh̄ω absorption/emission reported here takes place for each single-electron, timed packet.
The spatial and temporal resolutions can be optimized to the nano- and femto-scales and, as
shown here, the PINEM field is proportional to the cross section, the square of the radius of the
structure involved. Future PINEM experiments will extend these spatial and temporal domains.
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Fifthly, the fact that the PINEM effect occurs only when the scattered light interacts with
the electron allows us to achieve temporal control of the electron pulse. Scattering is virtually
instantaneous, and the temporal profile of the energy-exchanged electron resembles that of
the shorter laser pulse. One can temporally select the portion of the electron that overlaps
with the laser pulse, achieving a shorter electron pulse and suppressing electron–laser jitter;
both will be discussed in a forthcoming paper. Such arrangements can be used to accurately
synchronize the optical and electron pulses without interference from electronic and structural
dynamics. Because of these features, these measurements provide in situ characterization of the
temporal duration of the electron pulse, and accurate determination of the duration when the
laser power density and width, and the refractive index of the material, are known. By lowering
the photon energy to near the work function of the cathode producing the electron packets, it is in
principle possible [44, 45] to bring the electron pulses to the sub-100 fs domain, as demonstrated
experimentally by Baum and co-workers [46].

Sixthly, separation of the electron wave packet into distinct spatial frequency components
can be utilized to gain new information from the image. For example, the fact that the peak
of added kinetic energy by the photon separates well from the initial zero-loss peak greatly
enhances the signal-to-noise ratio. This is because the standard electron transmission image has
in it a background (the analogue of an optical absorption experiment), whereas the gain peak
is obtained with no background (the analogue of a fluorescence experiment). Energy-selected
imaging can reveal the light scattered by nanoparticles in dark field imaging, as demonstrated
in this paper. Another feature is image contrast selectivity and enhancement. Since the PINEM
effect is localized to the surface of nanostructures, it can be exploited to locally enhance the
electron microscopy contrast of such structures. The interaction is strong enough to induce
significant fractional change (and even depletion) of the zero-loss peak, hence its utility in
amplitude contrast with energy-filtering in bright field imaging. The same features can be
invoked to achieve improved amplitude contrast for nanostructures and interfaces even when
there is no efficient light absorption or electron phase shift by the material, as is commonly the
case with light element specimens and biological samples. Other possibilities include sample
thickness measurement and phase-contrast imaging. The specimen thickness induces phase
differences of the type exp[−i11kd] in the PINEM field, where 11k ≡1ke − kp, which
could be utilized to accurately measure the thickness (d) in an interferometric manner. The
contribution of the A2-term in PINEM could be exploited in ‘elastic imaging’ for inducing
phase shifts that control phase contrast in imaging, and because of the high peak power that
can be achieved, the pulsed mode would enable significant shifts. We note here that the PINEM
effect does not critically depend on the photon being on resonance with a transition (as in atoms
and molecules); this is because it is dependent on the broad dielectric response of the material
structure.

Finally, we discuss future experiments that could exploit coherence properties of PINEM.
For example, apart from its use in enhancing contrast and selectivity in microscopy, as a proof
of principle, one can devise a two-color electron population interference experiment using a
co-propagating fundamental and its second harmonic. Single-photon absorption of the second
harmonic and two-photon absorption of the fundamental would result in the same kinetic energy
change for the electron. However, the phase difference for these processes can be adjusted by
inserting a dielectric material ‘time-plate’ with different refractive indices at those wavelengths.
By changing the thickness of the time-plate and fine-tuning the temporal delay between the
two pulses within one optical cycle (1.7 fs for 519 nm photons), we should be able to observe
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constructive and destructive interferences for peaks of different orders. Preliminary analysis
(integrated over temporal packets, but not over space) indicates that energy gain and loss can be
selectively controlled for the same orders, by adjusting the phase difference between the 1038
and 519 nm pulses. Such a scheme, and related ones, opens the door to future coherent control
studies with PINEM.
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Appendix A. Quantum mechanical treatment of PINEM phenomena (the
scattering-of-photon/time-dependent Schrödinger equation (STS))

Here, we calculate the time evolution of the wavefunction of an electron traveling through the
electromagnetic field scattered by the interaction of an incident pulsed wave with a nanoscale
structure. For this problem, García de Abajo and co-workers used the quantum scattering
approach, in which the electron wavefunction following the interaction is expanded in orders
of scattering, with each scattering order decomposed as a linear combination of momentum
eigenfunctions with unknown coefficients. The Nth-order term was related to the (N + 1)th-
order term, a single scattering event, by considering the interaction Hamiltonian and the
propagation through Green’s function. In this way, an inductive relation is established between
the coefficients, such that they can all be calculated recursively. In contrast, we solve the time-
dependent Schrödinger equation analytically, which allows for closed form solution of the
coefficients. In addition, since the Schrödinger equation describes the time evolution, we obtain
the electron wavefunction as a function of time, not just after the interaction. Although the
electrons in current PINEM experiments travel at two-thirds the speed of light, we limit the
treatment in this contribution to the nonrelativistic formalism by solving the time-dependent
Schrödinger equation. In this treatment, the velocity is the actual (relativistically correct) value
for the electron, whereas the momentum and kinetic energy are the nonrelativistic values
that correspond to the velocity. It is to be reminded that the dispersion relation, ∂E/∂p = v,
holds for both nonrelativistic and relativistic cases and therefore the energy change due to a
change in momentum is the same in both pictures. For example, for an electron with Ee =

200 keV, the relativistic factor, the velocity and the momentum are γ = 1.39, ve = 0.695 c and
pe = 0.967 mec, respectively. For this velocity, the nonrelativistic kinetic energy and momentum
are Ee = 124 keV and pe = 0.695 mec, respectively. The equivalence between the two
formalisms will be presented elsewhere.
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The Hamiltonian for an electron in an electromagnetic field is given by [48]

H =
1

2me
( Epe − qe EA)2 + qeV, (A.1)

where qe = −e is the electron charge, me is the electron mass, EA is the vector potential and
V is the scalar potential. The ponderomotive term ( EA2) can be ignored when the electron
momentum is much larger. Choosing the Coulomb gauge (∇ · EA = 0) in the case of zero charge
density (V = 0), the vector potential is given by EE = −∂ EA/∂t , and the perturbation term in the
Hamiltonian for an electron in a linearly polarized electromagnetic wave of a single frequency
becomes, to first order in EA,

H ′
≈ −

qeh̄

2mei
EA · E∇ −

qeh̄

2mei
E∇ · EA = i

qeh̄

me

EA · E∇ = i
qeh̄

me

1

2

(
Ẽ

+iωp
+

Ẽ∗

−iωp

)
· E∇, (A.2)

whereωp is the angular frequency of the light, and Ẽ is the complex representation of the electric
field, Ẽ = EE(Er; kp, E0) exp[−iωpt] for the scattered light and Ẽ = x̂ E0 exp[ikpz] exp[−iωpt] for
the co-propagating incident light (we ignore the magnetic interaction, because q Ev× EB is always
transverse, and we are only interested in the ẑ-direction that couples with Epe). Electrons can
interact with the near field of the light scattered by the structure and either absorb (via the Ẽ
term) or emit (via the Ẽ∗ term) photons.

For the present study, it is convenient to follow the time evolution of the electron
wavefunction in the moving frame and express the one-dimensional (1D) electron wavefunction
in terms of the (moving) envelope function, such that 9(z, t)= g(z − vet, t)ψ0(z, t), where
ve is the group velocity of the electron packet, g(z′, t ′) is the envelope function in the
moving frame, ψ0(z, t)= exp[i(kez −ωet)] is the carrier wavefunction, and ke and ωe are the
initial nonrelativisitc spatial frequency and angular frequency of the electron, respectively, that
correspond to the velocity, ve. In this convention, z is the position in the reference (laboratory)
frame and z′ is the position with respect to the center of the moving electron packet. Initially,
the envelope function can be chosen to be a Gaussian function,

g(z′, t0 → −∞)=

(
1

√
2πveσe

exp

[
−

z′2

2v2
eσ

2
e

])1/2

,

for a pulsed electron packet, or a constant for a continuous current.
With this in mind, and using the time-dependent Schrödinger equation, ih̄(∂/∂t)9(Er , t)=

H9(Er , t), we obtain

ih̄(ġψ0 − veg′ψ0 − iωegψ0)= −
h̄2

2me
(g′′ψ0 + 2ikeg′ψ0 − k2

e gψ0)+ i
qeh̄

me
Az(g

′ψ0 + ikegψ0),

(A.3)

where g′ and g′′ denote the first- and second-order spatial derivatives with respect to z
(or equivalently with respect to z′), and ġ is the time derivative in the moving frame, i.e.
∂g(z′, t)/∂t |z′=z−vet . It is to be noted that differentiation of the first argument, z′

= z − vet , with
respect to time is separately given as the second term on the left-hand side. The third term on
the left-hand side and the third term on the right-hand side are the temporal evolution terms and
cancel each other. The second terms on both sides are the group velocity propagation terms, and
they also cancel each other. Since the electron has momentum in the ẑ-direction in the 1D planar
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wave approximation, only the ẑ component of the vector potential, Az, remains. Since ψ0 is a
common factor on both sides, it can be factored out to obtain the differential equation for the
envelope function to be

ih̄(ġ)= −
h̄2

2me
(g′′)+ i

qeh̄

me
Az(g

′ + ikeg). (A.4)

The g′ term is of the order of the reciprocal of the entire wave packet (∼ 1 mm) initially and
the wavelength of the light (∼500 nm) intermediately, while the ikeg term is of the order of the
reciprocal of the carrier wavelength of the electron (∼2.5 pm). Therefore, we can ignore the
g′ term. Also, the dispersion term, −(h̄2/2me)(g′′), is negligible within the time scale of the
interaction (�1ps). Dividing by ih̄, we obtain

ġ(z′, t)≈ i
qeke

me
Az(z

′ + vet, t)g(z′, t), (A.5)

which is a first-order ordinary differential equation in time at any position on the moving
frame [36], and its solution is readily given by

g(z′, t)= g(z′, t0) exp

[∫ t

t0

dt ′

(
i
qeke

me
Az(z

′ + vet
′, t ′)

)]
. (A.6)

By substituting the vector potential as a function of the electric field, equation (A.6)
becomes

g(z′, t)

g(z′, t0)
= exp

[∫ t

t0

dt ′

(
i
qeke

me

1

2

(
Ẽ z (z′ + vet ′, t ′)

iωp
−

Ẽ∗

z (z
′ + vet ′, t ′)

iωp

))]

= exp

[
i

qeke

meωp

∫ t

t0

dt ′Im(Ẽ z(z
′ + vet

′, t ′))

]
. (A.7)

Accordingly, equation (A.7) gives the envelope function in terms of the time integral of
the electric field experienced by the moving electron packet. When the incident wave is a
propagating Gaussian pulse,

Ẽ = E0 exp

[
−
(z − c (t − τ))2

4c2σ 2
p

]
exp[i(kpz −ωpt)],

where σp is the standard deviation (duration) of the light intensity, and τ is the time delay
between the electron and light pulses, the temporal dependence of the scattered wave needs to
explicitly incorporate the propagation effect. However, because the scattered wave is localized
near the nanoscale material with dimension a when the duration of the incident light is relatively
long compared to the transit time of the electron around the scattering center (σp � (a/ve) >

(a/c)), we can neglect the propagation effect, and assume that the scattered electric field varies
with the amplitude of the incident light field at the center of the structure (z ≈ 0),

E0(t)≈ E0 exp

[
−
(t − τ)2

4σ 2
p

]
.
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Therefore, the scattered electric field becomes

Ẽ ≈ EE(Er; kp, E0(t)) exp[−iωpt] = EE(Er; kp, E0) exp[−iωpt] exp

[
−
(t − τ)2

4σ 2
p

]
,

where we have used the fact that the scattered field is linearly proportional to the incident
wave amplitude in the exact (Mie) solution and the dipole (Rayleigh) approximation. Since
the complex representation of the electric field is separable in time and space variables,
equation (A.7) becomes

g(z′, t)

g(z′, t0)
= exp

[
i

qeke

meωp

∫ t

t0

dt ′ Im

(
Ẽ z(z

′ + vet
′, 0) exp

[
−iωpt ′

−
(t ′

− τ)2

4σ 2
p

])]
, (A.8)

and by substituting t ′
= (z′′

− z′/ve), we arrive at

g(z′, t)

g(z′, t0)
= exp

[
i

qeke

meveωp
Im

(
exp

[
iωp

z′

ve

] ∫ z′+vet

z′+vet0

dz′′ Ẽz(z
′′, 0)

× exp

[
−iωp

z′′

ve

]
exp

[
−
(z′′

−z′
−veτ)

2

4v2
eσ

2
p

])]
. (A.9)

Now the time integral is expressed in terms of the spatial integral of the electric field. The
Gaussian function in the integral is slowly varying, and the electric field is significant only in
the vicinity of z′′

= 0. Therefore, we can make the approximation z′′
≈ 0 in the Gaussian factor.

With meve = pe = h̄ke, equation (A.9) becomes

g(z′, t)

g(z′, t0)
≈ exp

[
i

qe

h̄ωp
exp

[
−
(z′ + veτ)

2

4v2
eσ

2
p

]
Im

(
exp

[
i
ωp

ve
z′

] ∫ z′+vet

z′+vet0

dz′′ Ẽ z

(
z′′, 0

)
exp

[
−i
ωp

ve
z′′

])]
.

(A.10)

The final envelope function at t → +∞, with t0 = −∞, becomes

g (z′,+∞)

g (z′,−∞)
= exp

[
i

qe

h̄ωp
exp

[
−
(z′ + veτ)

2

4v2
eσ

2
p

]
Im

(
exp

[
i
ωp

ve
z′

]∫ +∞

−∞

dz′′ Ẽ z

(
z′′, 0

)
exp

[
−i
ωp

ve
z′′

])]
.

(A.11)

We define the ‘PINEM field’ as

F̃ z

(
ωp

ve

)
≡

∫ +∞

−∞

dz′′ Ẽ z

(
z′′, 0

)
exp

[
−i

(
ωp

ve

)
z′′

]
,

which is the Fourier transform of the scattered electric field at the spatial frequency of 1ke =

ωp/ve, the value that corresponds to 1ωe = ωp according to the dispersion relation. Therefore,
the envelope function can be written as

g(z′,+∞)

g(z′,−∞)
= exp

[
i

qe

h̄ωp
exp

[
−
(z′ + veτ)

2

4v2
eσ

2
p

]
Im

(
exp

[
i
ωp

ve
z′

]
F̃ z

(
ωp

ve

))]
. (A.12)
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From equation (A.12), we see that after the interaction, the phase of the envelope function has
been modulated by a sine function with spatial frequency equal to 1ke. The final wavefunction
of the electron can now be written in terms of g(z′, t) and ψ0(z, t) as 9(z, t → +∞)=

g(z − vet,+∞)ψ0(z, t).
Now we Taylor-expand the exponential function in equation (A.12) and rewrite the Im

function as the subtraction of the argument by its complex conjugate to get

g(z′,+∞)

g(z′,−∞)
=

∞∑
m=0

1

m!

{
i

qe

h̄ωp
exp

[
−
(z′ + veτ)

2

4v2
eσ

2
p

]
1

2i

(
exp

[
i
ωp

ve
z′

]
F̃ z − exp

[
−i
ωp

ve
z′

]
F̃∗

z

)}m

=

∞∑
m=0

1

m!

{
qe

2h̄ωp
exp

[
−
(z′ + veτ)

2

4v2
eσ

2
p

]}m ∑
u+l=m

Bm
u

{
exp

[
i
ωp
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]
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}u {
− exp

[
−i
ωp
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z′

]
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z

}l

,

(A.13)

where Bm
u is the binomial coefficient [29, 30]. By re-arranging the summation with m = |n| + 2 j ,

n = u − l, u = n + j and l = j , we obtain

g (z′,+∞)

g (z′,−∞)
=

∞∑
n=−∞

{
exp

[
i
ωp

ve
z′

]}n ∞∑
j=0

1

(|n| + 2 j)!

{
qe

2h̄ωp
exp

[
−
(z′ + veτ)

2

4v2
eσ

2
p

]}|n|+2 j

×B |n|+2 j
j {F̃ z}

n+ j
{−F̃∗

z }
j . (A.14)

Equation (A.14) reduces to

g(z′,+∞)

g(z′,−∞)
→

∞∑
n=−∞

exp

[
i
nωp

ve
z′

](
F̃ z

|F̃ z|

)n

Jn

(
qe

h̄ωp
|F̃ z| exp

[
−
(z′ + veτ)

2

4v2
eσ

2
p

])
, (A.15)

where Jn is the Bessel function of the first kind [29, 30]. The same answer can be obtained using
the Jacobi–Anger relation [30], exp[iu sin x] =

∑
∞

n=−∞
exp[inx]Jn(u). Defining the amplitude

coefficients as

ξn(z
′)≡

(
F̃ z

|F̃ z|

)n

Jn

(
qe

h̄ωp
|F̃ z| exp

[
−
(z′ + veτ)

2

4v2
eσ

2
p

])
,

the final wavefunction becomes

9(z, t)= g(z − vet,−∞)

∞∑
n=−∞

ξn(z − vet) exp

[
i

{(
ke + n

ωp

ve

)
z − (ωe + nωp) t

}]
. (A.16)

Equation (A.16) describes the final state of the electron after passing through the scattered
field. From the initial momentum at pe = h̄ke, the wavefunction evolves into a superposition
of momentum distributions of pe = h̄(ke + n(ωp/ve)). The energy of the electron changes by
nh̄ωp, while the momentum changes by n(h̄ωp/ve), as required by the dispersion relation for the
electron. ξn(z′), the amplitude of the nth component, is a function of F̃ z(ωp/ve), the ‘PINEM
field’ component of the electric field at the spatial frequency of 1ke = (ωp/ve).
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Since the Bessel function is cosine-like for large arguments,

Jn (�)≈

√
2

π�
cos
(
�−

nπ

2
−
π

4

)
,

equation (A.16) is only computationally useful when the light is continuous (σp → ∞),
such that the Jn terms become independent of z′. In such a case, the envelope function
becomes a summation of spatial frequency components, exp[in(ωp/ve)z′], with the coefficient
of (F̃ z/|F̃ z|)

n Jn((qe/h̄ωp)|F̃ z|), whose population becomes {Jn((qe/h̄ωp)|F̃ z|)}
2. It is to be

mentioned that the Fourier transform of the envelope function yields a relative spatial frequency
change distribution, whereas including ψ0 in the Fourier transformation shifts the envelope
function by ke, and the initial Gaussian envelope function will broaden each nth spatial
component by (2veσe)

−1 for the continuous light case, where σe is the temporal length of the
electron packet.

On the other hand, for a pulsed light source, the population distribution (especially the
zero loss peak) depends on the electron pulse length, the laser duration length and the time
delay between the two. If the light pulse duration is shorter than the electron packet duration,
equation (A.15) cannot be analytically decomposed any further. However, for a slowly varying
pulsed light source, we may use equation (A.15) to approximate the population distribution.
Here, we will assume that the Jn term in equation (A.15) is the slowly varying position-
dependent amplitude of exp[in(ωp/ve)z′] and therefore the square of the Jn term represents a
local fraction of the nth state, such that we can evaluate the total fraction by averaging it over
the electron envelope as

P(n; τ)=

∫ +∞

−∞

dz′

∣∣∣∣∣g(z′,−∞)Jn

(
qe

h̄ωp
|F̃ z| exp

[
−
(z′ + veτ)

2

4v2
eσ

2
p

])∣∣∣∣∣
2

. (A.17)

We later confirm that the exact treatment, via Fourier transforming equation (A.12) and
integrating the amplitude squared in the vicinity of the center spatial frequency of the nth state,
agrees with equation (A.17).

Equation (A.17) cannot be analytically simplified and needs to be numerically integrated.
However, equation (A.14) can be Fourier-transformed to yield P(n; τ) as an infinite summation
of absorption/emission probabilities, as follows. With

g(z′,−∞)=

√
1

√
2πveσe

exp

[
−

z′2

4v2
eσ

2
e

]
explicitly, we now take equation (A.14), and re-arrange the exponential terms as

g(z′,+∞)= g(z′,−∞)

∞∑
n=−∞

∞∑
j=0

Cn
j exp

[
in1kez′

−
(|n| + 2 j)(z′ + veτ)

2

4v2
eσ

2
p

]

=

√
1

√
2πveσe

∞∑
n=−∞

∞∑
j=0

Cn
j exp

[
in1kez′

−
(z′ + cn

j )
2

2(6n
j )

2
− dn

j

]
, (A.18)
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where

Cn
j =

B |n|+2 j
j

(|n| + 2 j)!

(
qe F̃ z

2h̄ωp

)n+ j (
−

qe F̃∗

z

2h̄ωp

) j

=
1

(|n| + j)! j!

(
qe F̃ z

2h̄ωp

)n+ j (
−

qe F̃∗

z

2h̄ωp

) j

,

cn
j =

veτ(|n| + 2 j)σ 2
e

σ 2
p + (|n| + 2 j) σ 2

e

, 6n
j =

√
2v2

eσ
2
p σ

2
e

σ 2
p + (|n| + 2 j) σ 2

e

and dn
j =

(|n| + 2 j) τ 2

4(σ 2
p + (|n| + 2 j) σ 2

e )
.

Equation (A.18) shows that the nth state is a summation of (un-normalized) Gaussian packets
with a width of 6n

j and coefficients of Cn
j exp[−dn

j ], which are alternately positive and negative
with respect to j . By inverse Fourier transformation into the spatial frequency space, one obtains
the spatial frequency amplitude spectrum,

ĝ(k ′, t)=

√
1

√
2πveσe

∞∑
n=−∞

∞∑
j=0

Cn
j exp[−dn

j ]6n
j exp

[
−icn

j (k
′
− n1ke)−

(k ′
− n1ke)

2

2(6n
j )

−2

]
.

(A.19)

Equation (A.19) shows the spatial frequency distribution in the vicinity of n1ke for each nth
state as a summation over j components. We want to integrate the square of the amplitude by a
group around n1ke to evaluate the discrete population as

P(n)=

∫ (n+1/2)1ke

(n−1/2)1ke

dk ′
|ĝ(k ′,+∞)|2. (A.20)

When (6n
j )

−1 is not larger than the interval, 1ke, for significantly populated j component and
therefore the nth term does not overlap with the (n + 1)th term, we can limit the summation only
to the single nth component, and extend the integration range to infinite, and obtain

P(n) ≈

∫ +∞

−∞

d1k ′

∣∣∣∣∣∣
√

1
√

2πveσe

∞∑
j=0

Cn
j exp[−dn

j ]6n
j exp

[
−icn

j1k ′
−

1k ′2

2(6n
j )

−2

]∣∣∣∣∣∣
2

, (A.21)

where 1k ′
= k ′

− n1ke. By re-substituting cn
j , 6

n
j and dn

j and simplifying, we obtain

P(n)=

∞∑
j=0

∞∑
k=0

Cn
j C

n∗

k

1√
1 + (n + j + k) ( σe

σp
)2

exp

[
−

(n + j + k) ( τ
σp
)2

2 + 2 (n + j + k) ( σe
σp
)2

]
. (A.22)

Equation (A.22) is exactly same as equation (10) in García de Abajo’s work [21] with1e = 2σe,
1p = 2σp, N = n + 2 j , N ′

= n + 2k, and L = n. Now we can identify the analytical form of the
coupling coefficient in [21] as

C N
L =

B(N , L)

N !

(
qe F̃ z

2h̄ωp

)N+L/2 (
−

qe F̃∗

z

2h̄ωp

)N−L/2
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from our result,

Cn
j =

B |n|+2 j
j

(|n| + 2 j)!

(
qe F̃ z

2h̄ωp

)n+ j (
−

qe F̃∗

z

2h̄ωp

) j

=
1

(|n| + j) ! j!

(
qe F̃ z

2h̄ωp

)n+ j (
−

qe F̃∗

z

2h̄ωp

) j

.

It is to be noted that the definitions of indices are different for coefficients. We also find
equation (A.17) to be valid by the same argument of a narrow spectrum invoked to derive
equation (A.22).

In equation (A.22), the F̃ z terms can be analytically integrated over b and φ, and the total
fraction can be analytically expressed as an infinite summation,

PEEGS(n)=

∞∑
j=0

∞∑
k=0

Dn
jkCn

j C
n∗

k

1√
1 + (n + j + k)( σe

σp
)2

exp

[
−

(n + j + k)( τ
σp
)2

2 + 2(n + j + k)( σe
σp
)2

]
, (A.23)

where

Dn
jk =

δ((2(n + j + k)a + δ)− exp[−2(n+ j+k)(w−a)
δ

](2(n + j + k)w + δ))

2
√
π(n + j + k)2(w2 − a2)

0( 1
2 + n + j + k)

0(1 + n + j + k)
,

for a spherical particle, assuming Fz(b, φ)≈ Fz(a, 0) exp[−(b − a)/δ]cosφ. For a cylindrical
particle, the integration is approximated as a rectangle integration over b and y, and we
obtain

Dn
jk =

δ(1 − exp[−2(n+ j+k)(w−a)
δ

])

2(n + j + k)(w− a)
,

assuming Fz(b, y)≈ Fz(a, 0) exp[−(b − a)/δ].
In order to compare with previous work, we briefly consider the CW, weak interaction,

limit of equation (A.17). The probability of single photon absorption/emission by electrons has
been given [20] as

P(+h̄ωp)=

(
e

h̄ωp

)2 ∣∣∣∣∫ dz Ez(Eb, z) exp

[
−i
ωp

ve
z

]∣∣∣∣2 , (A.24)

where Ez is the real-valued representation of the electric field. In this limit, (e/h̄ωp)|F̃ z| � 1,
and equation (22) reduces to

P(±h̄ωp)=

{
J1

(
−

e

h̄ωp
|F̃ z|

)}2

≈

(
1

2

e

h̄ωp
|F̃ z|

)2

,

which agrees with equation (A.24).
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Appendix B. Light scattering: Mie exact solutions

The electric field components (radial and angular) of the scattered wave, normalized by the
incident wave amplitude, are given by the following expressions for a spherical nanostructure,

Er = e−iωt cosφ
∞∑

n=1

in 2n + 1

n(n + 1)
ian

{
d2 P1

n (cos θ)

dθ2
+ cot θ

dP1
n (cos θ)

dθ
−

P1
n (cos θ)

sin2 θ

}
h1

n (kr)

kr
,

Eθ = e−iωt cosφ
∞∑

n=1

in 2n + 1

n(n + 1)

{
bn

P1
n (cos θ)

sin θ
h1

n (kr)− ian
dP1

n (cos θ)

dθ

(
dh1

n (kr)

dkr
+

h1
n (kr)

kr

)}
,

Eφ =−e−iωt sinφ
∞∑

n=1

in 2n + 1

n(n + 1)

{
bn

dP1
n (cos θ)

dθ
h1

n (kr)− ian
P1

n (cos θ)

sin θ

(
dh1

n (kr)

dkr
+

h1
n (kr)

kr

)}
,

(B.1)

where the coefficients are

an =
ψ ′

n (ñkr) ψn (kr)− ñψn (ñkr) ψ ′

n (kr)

ψ ′
n (ñkr) ζn (kr)− ñψn (ñkr) ζ ′

n (kr)
,

ψn(z)= z jn(z), and ζn(z)= zh1
n(z). Here, jn(z) and h1

n(z) are spherical Bessel and Hankel
functions of the first kind, respectively, and Pm

l (z) is the associated Legendre polynomial. The
prime denotes the differentiation with respect to the function argument.

It is to be mentioned that the radial component of the electric field of the scattered spherical
wave, Er , is often neglected in the far field since it decays faster than the angular components,
Eθ , far away from the scattering source. However, in the near field, the radial component
is comparable to the angular components, and needs to be explicitly considered. Near field
enhancement was investigated by Messinger et al [49, 50]. It is to be noted that the Mie solution
is exact but physically less intuitive than the (Rayleigh) dipole approximation (Equation (16))
because it is expressed in terms of an infinite summation of Legendre polynomials [29, 30]
and spherical Hankel functions [29, 30], whose values depend on the sphere size, incident
wavelength and refractive index. However, the Mie solution reduces to the simple (Rayleigh)
dipole approximation when the particle size becomes very small.

As for the polarization dependence, both Er and Eθ are proportional to cosφ [33], where
φ is the azimuth angle with respect to the polarization direction, x̂ . Since the longitudinal
component (parallel to the propagation of the incident wave), Ez, is given as Ez = Er cos θ −

Eθ sin θ , it is also proportional to cosφ. The Mie solution also can be applied to metals, which
have complex-valued dielectric constants and therefore complex-valued refractive indices (for
example, the refractive index of silver is 0.05 + 3.31i at 519 nm incident excitation).

For an infinitely long cylinder, a similar solution is also possible [33]. The cylindrical
solution for the scattered wave is expressed in terms of complex exponential and Hankel
functions [29, 30]. Here, we only consider perpendicular incidence, where the light propagation
(Ek) is normal to the symmetry axis (ŷ). Defining (π/2)−φ as the angle of the light polarization
( EE0) with respect to the symmetry axis, the incident electric field perpendicular to the symmetry
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axis is given as E⊥ = E0 cosφ. The (normalized) electric field components of the scattered
field are

Er = −e−iωt
+∞∑

n=−∞

(−1)n e−inθnan
H 1

n (kr)

kr
cosφ,

Eθ = ie−iωt
+∞∑

n=−∞

(−1)n e−inθan
dH 1

n (kr)

dkr
cosφ, (B.2)

Ey = −ie−iωt
+∞∑

n=−∞

(−1)n e−inθbn

(
n2 H 1

n (kr)

k2r 2
−

1

kr

dH 1
n (kr)

dkr
−

d2 H 1
n (kr)

d(kr)2

)
sinφ,

where the coefficients are

an =
J ′

n (ñkr) Jn (kr)− ñ Jn (ñkr) J ′

n (kr)

J ′
n (ñkr) H 1

n (kr)− ñ Jn (ñkr) H 1′
n (kr)

,

bn =
ñ J ′

n (ñkr) Jn (kr)− Jn (ñkr) J ′

n (kr)

ñ J ′
n (ñkr) H 1

n (kr)− Jn (ñkr) H 1′
n (kr)

,

and Jn(z) and H 1
n (z) are (cylindrical) Bessel and Hankel functions of the first kind, respectively.

Since the longitudinal component, Ez, is given as Ez = Er cos θ − Eθ sin θ , the polarization is
also proportional to cosφ (see equation (B.2)). For a finite-length cylinder, the solution becomes
nontrivial due to edge effects and requires the multiple pole method.

Appendix C. The kinetics, incoherent-coupling model

Here, we present a statistical model describing multiple photon absorption/emission in terms of
sequential electron–photon interactions, where the interactions are assumed to be incoherent. In
the weak interaction regime (see equation (A.24)), the total number of interactions (including
both absorption and emission of a single photon) is

µ= P (+h̄ω)+ P (−h̄ω)= 2

(
1

2

e

h̄ω

∣∣∣F̃ z

∣∣∣)2

. (C.1)

In this model, the interactions are due to incoherent ‘collisions’ between the electron and
photons in the vicinity of scattering. Since µ∝ |F̃ z|

2 is proportional to the light intensity (or
photon density) in equation (C.1) and since µ should always be proportional to the photon
density (i.e. the ‘collision probability’) assuming incoherent coupling, we can assume that
equation (C.1) is valid in the strong interaction regime as well. Furthermore, equation (C.1)
is insensitive to the initial state (n = 0, ±1, ±2,...), and can be (approximately) applied to
transitions from any state (both initial and intermediate). Therefore, equation (C.1) can be used
to describe the total number of events for all the electron states in the statistical picture.

Let us define m as the number of interactions (both absorption and emission), um the total
number of absorptions and lm the total number of emissions, such that m = um + lm and the net
change n = um − lm . Table C.1 depicts the possible combinations of (um, lm) for each m and n.
With these definitions, m = |n|, |n| + 2, |n| + 4, |n| + 6, . . .. Assuming that the interaction is a
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Table C.1. The number of absorptions and emissions for the total number of
photon interactions and net photon energy exchange, (um, lm). (See text for the
meaning of the notation.)

m
n 0 1 2 3 4 5 6 7

−7 (0,7)
−6 (0,6)
−5 (0,5) (1,6)
−4 (0,4) (1,5)
−3 (0,3) (1,4) (2,5)
−2 (0,2) (1,3) (2,4)
−1 (0,1) (1,2) (2,3) (3,4)
0 (0,0) (1,1) (2,2) (3,3)
+1 (1,0) (2,1) (3,2) (4,3)
+2 (2,0) (3,1) (4,2)
+3 (3,0) (4,1) (5,2)
+4 (4,0) (5,1)
+5 (5,0) (6,1)
+6 (6,0)
+7 (7,0)

random process, the collision distribution is Poisson with mean expectation value, µ. Assuming
that n follows a binomial distribution with equal probabilities of absorption and emission, we
can evaluate the probability of net photon energy exchange at each position of the electron
packet, Pn(z′), by summing over m,

Pn(z
′, µ(z′))=

∞∑
m=0

P(z′, µ(z′); n,m)=

∞∑
m

PP(m;µ(z′))PB

(
um; m,

1

2

)
, (C.2)

where PP is the Poisson distribution function and PB is the binomial distribution function. By
substituting um = (m + n/2) and m = n + 2 j , equation (C.2) becomes

Pn(z
′, µ(z′))=

∞∑
j=0

PP(n + 2 j;µ(z′))PB

(
n + |n|

2
+ j; |n| + 2 j,

1

2

)
. (C.3)

The summation in equation (C.3) can be analytically expressed as

Pn(z
′, µ(z′))= exp[−µ(z′)]In(µ(z

′)), (C.4)

where In is the modified Bessel function of the first kind. Equation (C.4) describes the net
photon energy exchange distribution.

Since the high-energy electron passes by the nanometer scale particle within 1 fs, which is
the order of the duration of the photon–electron interaction, and the pulse durations of the laser
and electron are hundreds or more femtoseconds, the light intensity (i.e. photon density) used
in equations (C.1) and (C.4) must be estimated at the time that the electron passes the scattered
field. The normalized envelope of the electron density is given by

ρ(z, t)=
1

√
2πveσe

exp

[
−
(z − vet)

2

2 (veσe)
2

]
, (C.5)
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where σe is the standard deviation duration of the electron pulse. Similarly, the envelope function
of the incident light intensity is given by

I (z, t)= I0 exp

[
−
(z − c (t − τ))2

2(cσp)2

]
, (C.6)

where σp is the standard deviation duration of the light pulse, c is the speed of light, τ is the time
delay between the electron and light pulses and I0 is the peak intensity of the light pulse. Since
the light intensity is slowly varying compared to the interaction duration, the mean number of
interactions according to equation (C.1) can be evaluated by using the light intensity when the
light passes z = 0 at the time that the electron arrives at z = 0.

It is convenient to define a moving coordinate, z′
= z − vet , to address each portion of the

electron packet. Then equation (C.5) becomes

ρ(z′)=
1

√
2πveσe

exp

[
−

(z′)
2

2(veσe)2

]
. (C.7)

Since the nanomaterial is centered at z = 0, the electron portion at z′ arrives at t = −z′/ve. The
light intensity impinging the particle at this instant in time is

I

(
0,−

z′

v

)
= I0 exp

[
−
(0 − c(− z′

ve
− τ))2

2(cσp)2

]
= I0 exp

[
−
(z′ + veτ)

2

2(veσp)2

]
, (C.8)

and the total number of interactions for the electron portion at z′, µ(z′), is

µ(z′)≈ µ0 exp

[
−
(z′ + veτ)

2

2(veσp)2

]
, (C.9)

where we have taken advantage of the fact that µ∝ |F̃ z|
2
∝ E2

0 ∝ I .
The fraction of electrons in the nth state is the convolution of the electron density with the

n-photon collision probability, integrated over the electron packet,

fn =

∫
∞

−∞

dz′ ρ(z′)Pn(z
′, µ(z′)). (C.10)

Equation (C.10) depends on τ , σp and σe directly, and on |E0|
2 and Eb through

equation (C.1).
Substituting equation (C.7) and the Taylor expansion of the modified Bessel function of

the first kind in equations (C.3), equation (C.10) becomes

fn =

∫
∞

−∞

dz′
1

√
2πveσe

exp

[
−

(z′)
2

2 (veσe)
2

]
∞∑
j=0

1

j!
{−µ(z′)} j

∞∑
k=0

1

k!(n + k)!

{
1

2
µ(z′)

}n+2k

,

(C.11)

which, after integration, reduces to

fn =

∞∑
j=0

∞∑
k=0

cn
jk

1√
1 + (n + j + 2k)( σe

σp
)2

exp

[
−

(n + j + 2k)( τ
σp
)2

2 + 2 (n + j + 2k) ( σe
σp
)2

]
, (C.12)
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where

cn
jk =

(−2) j

j!k! (n + k)!

(
µ (τ = 0, b, φ)

2

)n+ j+2k

=
(−2) j

j!k! (n + k)!

e
∣∣∣F̃ z

∣∣∣ (τ = 0, b, φ)

2h̄ω

2(n+ j+2k)

,

for µ= 2(e|F̃ z|/2h̄ω)2 from equation (C.1). Integration of fn over b and φ results in the EEGS
probability,

PEEGS(n)=

∞∑
j=0

∞∑
k=0

dn
jkcn

jk

1√
1 + (n + j + 2k) ( σe

σp
)2

exp

[
−

(n + j + 2k) ( τ
σp
)2

2 + 2 (n + j + 2k) ( σe
σp
)2

]
, (C.13)

where

dn
jk =

δ((2(n + j + 2k)a + δ)− exp[−2(n+ j+2k)(w−a)
δ

](2(n + j + 2k)w + δ))

2
√
π(n + j + 2k)2(w2 − a2)

0(1
2 + n + j + 2k)

0(1 + n + j + 2k)
,

for a spherical particle, assuming Fz(b, φ)≈ Fz(a, 0) exp[−(b − a)/δ]cosφ. For a cylindrical
particle, the integration is approximated as a rectangle integration over b and y, and we obtain

dn
jk =

δ(1 − exp[− 2(n+ j+2k)(w−a)
δ

])

2 (n + j + 2k) (w− a)
,

assuming Fz(b, y)≈ Fz(a, 0) exp[−(b − a)δ].

Appendix D. Calculations

The calculation was performed using programs such as Mathematica [51], GNU Octave [52] and
GNU bc [53]. The Mie calculation code was adapted from MATLAB [54] code of Mätzler [55].
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